Neuroinvasion by simian immunodeficiency virus coincides with increased numbers of perivascular macrophages/microglia and intrathecal immune activation

Joan H Lane1, Vito G Sasseville1, Mary O Smith2, Peter Vogel3*, Douglas R Pauley1, Melvyn P Heyes4, Andrew A Lackner1

1New England Regional Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772, 2Colorado State University, College of Veterinary Medicine, Fort Collins, Colorado 80523, 3California Regional Primate Research Center, University of California, Davis, California 95616, 4National Institute of Mental Health, Bethesda, Maryland 20892, USA

During peak viremia and initial antibody response, rhesus macaques infected with pathogenic and nonpathogenic isolates of SIV show distinct differences in viral load and tissue distribution. Animals infected with pathogenic isolates of SIV invariably have virus in the CSF and brain parenchyma by two weeks postinoculation, whereas animals infected with nonpathogenic isolates do not. Mechanisms underlying neuroinvasion by SIV and HIV are unknown, but recruitment of latently infected mononuclear cells from the peripheral circulation (Trojan horse theory) is frequently proposed. Circulating monocytes, from which perivascular macrophage/microglia are derived, are a likely vehicle for cell-associated transport of virus across the blood-brain barrier. This transport and the kinetics of perivascular macrophage/microglial turnover in the CNS likely depend on endothelial and leukocyte adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), which has previously been shown to be upregulated on cerebrovascular endothelium in SIV encephalitis. To investigate the role of peripheral monocyte recruitment into the perivascular macrophage/microglial cell pool at the time of initial viral neuroinvasion, we examined the temporal relationships among perivascular macrophage/microglia density, endothelial VCAM-1 expression and localization of viral nucleic acid in the CNS of macaques acutely infected with pathogenic and nonpathogenic molecular clones of SIV. The concentration of CSF quinolinic acid, a marker of intrathecal immune and macrophage activation, was examined concurrently. We found that significant increases in the density of perivascular macrophages/microglia coincided with viral neuroinvasion and marked elevations in CSF quinolinic acid. Furthermore, combined in situ hybridization and immunohistochemistry demonstrated that infected perivascular cells were macrophages/microglia. These findings provide evidence suggesting that neuroinvasion occurs through an influx of infected monocytes which take up residence in the CNS as perivascular macrophages/microglia. VCAM-1 expression, however, was not clearly correlated with these events, thus its contribution to initial viral neuroinvasion is unclear.

Keywords: neuroAIDS; leukocyte traffic; quinolinic acid; image analysis

Introduction

Encephalitis is a common debilitating consequence of HIV infection. Studies have shown that, in the acute stage of disease, virus is frequently present in the cerebrospinal fluid (CSF) of humans infected with HIV (Chiordi et al, 1988; Ho et al, 1985). Similarly, in the SIV/macaque model of AIDS, virus has been demonstrated in the CSF and brain parenchyma within 2 weeks of infection (Chakrabarti et al, 1991; Lackner et al, 1994). Despite the
speed and frequency with which HIV and SIV enter the central nervous system (CNS) of their respective hosts, the mechanisms underlying viral entry into the CNS are unknown. The Trojan horse theory developed largely from work with Visna virus in sheep is a commonly proposed mechanism (Peluso et al., 1985). According to this theory, peripheral blood mononuclear cells, a portion of which are latently infected, carry virus across an intact blood–brain–barrier (BBB) and take up residence in the perivascular space or brain parenchyma where they actively produce virus. Support for this theory includes studies involving HIV in humans and SIV in rhesus macaques which demonstrate that: (1) parenchymal microglia and perivascular macrophages/microglia are the only resident cells of the CNS that support productive HIV/SIV infection (Brinkmann et al., 1992; 1993; Koenig et al., 1986; Lackner et al., 1991; Vazquez et al., 1987); (2) macrophage-competent variants are associated with development of encephalitis (Desrosiers et al., 1991; Vazquez et al., 1987); (3) neuroinvasion by SIV is not associated with a gross disruption of the BBB (Smith et al., 1998); (4) the distribution of SIV-infected cells early in infection is almost exclusively perivascular (Smith et al., 1995); and (5) direct intracerebral inoculation of SIV in rhesus monkeys fails to alter the distribution of virus and may delay the course of CNS disease compared to i.v. inoculation (Boche et al., 1995; Chakrabarti et al., 1991). If the Trojan horse mechanism is the primary means through which SIV and HIV enter the CNS, elucidating which stimuli are necessary for transmigration of monocytes across the BBB is of critical importance in understanding the neuropathogenesis of AIDS.

Microglia and macrophages are derived from a common bone marrow progenitor cell and both are capable of antigen presentation (Hickey and Kimura, 1988). Studies in rodents indicate that most parenchymal microglia arrive in the CNS during gestation, express few of the antigens associated with monocyte/macrophages and persist with very low turnover and limited capacity for cell division (Lawson et al., 1992). In contrast, perivascular macrophages/microglia have a more activated phenotype and express a larger repertoire of antigens common to macrophages elsewhere in the body. In addition, they turn over more frequently and are replaced by circulating monocytes throughout life (Perry, 1994). Furthermore, studies in the Lewis rat have demonstrated that recruitment of perivascular macrophages/microglia can be accelerated during CNS inflammation, while parenchymal microglia are only rarely replaced by hematogenous cells (Lassman et al., 1993).

The CNS responds to inflammatory stimuli in unique ways, rendering extrapolation from other tissues inappropriate (Andersson et al., 1992a). Consequently, we may expect different patterns of chemoattractant and adhesion molecule expression in CNS inflammation when compared to inflammation involving other tissues. We have shown that endothelial vascular cell adhesion molecule-1 (VCAM-1), an adhesion molecule belonging to the immunoglobulin superfamily which is induced by proinflammatory cytokines, is upregulated in the CNS of macaques with SIV encephalitis (Sasseville et al., 1992). Similarly, VCAM-1 expression parallels upregulation of proinflammatory cytokines in brain tissue of HIV-1 infected individuals (Notte et al., 1996). Additionally, we have shown that VCAM-1/α4β1 integrin interactions mediate selective adhesion of monocytes to encephalitic brain sections in vitro (Sasseville et al., 1994).

Several studies indicate that HIV and SIV do not productively infect neurons, focusing much attention on indirect mediators of neuronal injury including quinolinic acid (Genis et al., 1992; Heyes et al., 1992; Ljubisa et al., 1994). In the CNS, activated macrophages/microglia are most likely the predominant source of quinolinic acid (QUIN). QUIN is a metabolite of L-tryptophan which has been implicated in the neuropathogenesis of HIV infection via its action at neuronal N-methyl-D-aspartate receptors (Heyes et al., 1991). Thus CSF QUIN is a marker of intrathecal immune activation which also may have a functional role in the neuropathogenesis of SIV infection.

To investigate the role of peripheral blood monocyte recruitment to the CNS in SIV neuroinvasion, we examined the temporal relationships among perivascular macrophage/microglial density, cerebral endothelial VCAM-1 expression, CSF QUIN production, and localization of viral nucleic acid in the CNS of acutely SIV-infected rhesus macaques. To examine the impact of viral determinants on these parameters, groups of animals were inoculated with either pathogenic (SIVmac239) or nonpathogenic (SIVmac171) molecular clones of SIV and compared to macaques inoculated with SIVmac171, an uncloned biological isolate which consists of numerous quasispecies. The two pathogenic isolates (SIVmac and SIVmac239) cause a fatal AIDS-like disease including SIV encephalitis. In contrast, SIVmac171 is nonpathogenic and does not induce encephalitis (Lackner et al., 1994; Smith et al., 1995).

We found that the numbers of perivascular macrophages/microglia were highest at two weeks postinoculation in animals infected with the pathogenic isolates of SIV, concomitant with viral neuroinvasion and peak CSF QUIN levels. The nonpathogenic clone induced no significant changes in QUIN production or density of perivascular macrophages/microglia when compared to uninfected control animals and failed to invade the CNS. These data suggest that recruitment of peripheral blood monocytes to the perivascular
macrophage/microglial pool during the first few weeks of infection is a likely mechanism through which pathogenic SIV enters the CNS.

Results

Histopathology

Results of histopathologic examination of the CNS are summarized in Table 1. All animals with one exception (24891) were sacrificed before clinical signs of disease developed. However, histologic changes were observed in the CNS of several animals infected with SIVmac or SIVmac239. Lesions consisted of a mild meningoencephalitis with multifocal, perivascular and meningeal mononuclear cell infiltrates and rare glial nodules. While randomly distributed throughout the CNS, inflammatory cell infiltrates were more commonly observed in white matter than cortical or deep grey matter as previously described (Chakraborti et al., 1991; Lackner et al., 1991; Smith et al., 1995). These changes were found most consistently in animals sacrificed at 2 weeks postinoculation (4/4) and diminished in frequency thereafter (1/4 at 8 weeks, 2/4 at 13 weeks and 1/4 at 23 weeks). Animal 24891 was sacrificed when moribund at 22 weeks postinoculation following rapid disease progression. This was the only animal to develop SIV encephalitis with characteristic parenchymal multinucleate giant cells. No lesions were observed in CNS tissues of animals inoculated with SIVmac1A11.

Viral isolation

Results of viral isolation from PBMC and CSF from these animals have been reported in detail previously (Lackner et al., 1994). Briefly, animals inoculated with pathogenic virus were persistently viremic by 1 week except for one animal inoculated with SIVmac239 (24231). By 2 weeks postinoculation all animals inoculated with pathogenic virus were viremic and remained so throughout the study. Macaques inoculated with SIVmac1A11 were viremic by 2 weeks postinoculation but the viremia was transient and no virus was isolated from these animals after four weeks of infection.

In the CSF, virus was isolated from all animals inoculated with SIVmac or SIVmac239 by 2 weeks postinoculation. Between 8 and 13 weeks postinoculation, virus was isolated from only five of 27 CSF cultures collected from animals inoculated with pathogenic virus. By 21 weeks postinoculation, CSF cultures were again uniformly positive in all animals remaining in the study (n=4). In contrast, virus was never isolated from the CSF of animals inoculated with nonpathogenic SIVmac1A11.

SIV-positive cells are perivascular in early infection

Paraffin sections of brain and spinal cord were examined for viral nucleic acids by in situ hybridization. Cells positive for viral nucleic acid were found almost exclusively in a perivascular location. No predilection for a specific anatomic region within the CNS was observed, although positive cells were more frequently observed in white matter compared to grey matter. Distribution of virus detected by in situ hybridization in CNS tissues of these animals has been previously reported (Smith et al., 1995). All four animals sacrificed 2 weeks after inoculation with SIVmac and SIVmac239 had virus-positive cells closely associated with blood vessels (Figure 1a). In most instances, the number of perivascular macrophages/microglia positive for SIV by in situ hybridization was greatly exceeded by those which were uninfected (<10%, data not shown). Com-

<table>
<thead>
<tr>
<th>Table 1 Neuropathologic findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus</td>
</tr>
<tr>
<td>SIVmac</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SIVmac239</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

*Animal 24891 was euthanized at 22 weeks pi with terminal simian AIDS. Animals inoculated with SIVmac1A11 had no significant pathologic findings. NSL-no significant lesions identified.
bined in situ hybridization/immunohistochemistry showed that infected cells were HAM56-positive, consistent with monocyte/macrophage derivation (Figure 1b). At later time points when remaining animals had developed SIV-specific immune responses (Smith et al., 1995), virus-positive cells were less frequent. The exception to this pattern was observed in animal 24891. This macaque had no detectable humoral immune response, became rapidly moribund with AIDS, and histologically had SIV encephalitis with characteristic multinucleate giant cells.

Perivascular macrophage/microglia density

To examine numbers of perivascular macrophage/microglia we performed immunohistochemistry using HAM56 (Figure 1c,d). For each vascular profile examined, the number of HAM56+ perivascular macrophages/microglia per millimeter of vessel length was determined by morphometric analysis (Figures 2 and 3). Animals infected with uncloned SIVmac had significantly more perivascular macrophages than animals inoculated with SIVmac239 and SIVmac1A7 or uninfected controls (P=0.006, F value=5.36). At 2 and 8 weeks post-inoculation, numbers of perivascular macrophage/microglia in animals inoculated with SIVmac239 were greater than in animals inoculated with SIVmac1A7 or uninfected controls, but these did not reach levels of statistical significance. In the pooled group of 28 animals, a statistically significant decline in the density of perivascular macrophages/microglia was observed by 13 weeks post-inoculation (P=0.045, F value=2.90). Of all two-way comparisons among time intervals, differences between 0 and 2 weeks (P=0.008), 0 and 8 weeks (P=0.048), 2 and 13 weeks (P=0.046), and 2 and 23 weeks (P=0.023) reached levels of statistical significance.

Correlation of VCAM-1 expression and perivascular macrophage/microglial density

To examine the relationship between VCAM-1 expression and perivascular macrophage/microglial density in the acute phase of disease, representative frozen sections of cerebrum from each animal were scored for VCAM-1 expression as described (Silber et al., 1994) and correlated with perivascular macrophage/microglial density deter-
Figure 2. Perivascular macrophage density determined by image analysis of HAM56-immunostained sections of cortical white matter. Each column represents values for one animal, either uninfected (0 weeks) or inoculated with pathogenic uncloned SIVmac, pathogenic cloned SIVmacclone, or nonpathogenic cloned SIVmac1A11. Animals were serially sacrificed at 2, 8, 13, and 23 weeks postinoculation. Perivascular macrophage numbers were highest at 2 weeks postinoculation and declined significantly between 2 and 13 weeks. The animal that had the highest density of perivascular macrophages, 24891, was sacrificed at 22 weeks with severe SIV encephalitis. 24891 and 24255 (arrows), in which perivascular macrophage density was markedly increased compared to animals of similar inoculum and duration of infection, were the only infected animals that failed to mount detectable SIV-specific IgG responses.

Figure 3. Temporal relationship between perivascular macrophage density and CSF QUIN concentration. Each column represents the average perivascular cell density of two animals sacrificed at each time point. Average perivascular macrophage density from four uninfected animals is shown at 0 weeks. CSF QUIN values represent averages of animals remaining alive at the indicated time point. Highest numbers of perivascular macrophages coincided with peak QUIN levels at 2 weeks postinoculation. Note the failure of SIVmac1A11 to induce changes in CSF QUIN levels. Excluded from the figure are values from animal 24891, which had terminal SIV encephalitis and markedly elevated values (QUIN level=901.7 nM/L, Perivascular macrophage density=60.01 cells/mm).

Quinolinic acid levels correlate with perivascular macrophage/microglial density

CSF quinolinic acid, which is produced primarily by activated macrophages/microglia, was measured as a marker of intrathecal immune activation at 0, 1, 2, 4, 8, 13, and 23 weeks postinoculation. In animals inoculated with pathogenic viral isolates, QUIN values rose sharply (up to 1000-fold) by 2 weeks postinoculation coincident with viral neuroinvasion and an elevation in perivascular macrophage/microglial density (Figure 3). QUIN then rapidly decreased by 8 weeks postinoculation with the onset of an immune response (Smith et al., 1995). CSF QUIN in the SIVmac1A11 group never increased significantly over preinoculation levels. Animal 24891, the only animal to develop SIV encephalitis during the 23-week study, showed delayed but persistent elevation of QUIN at 13 weeks postinoculation until sacrifice at 22 weeks. CSF QUIN was significantly greater in animals inoculated with either SIVmac or SIVmacclone than in those inoculated with SIVmac1A11. CSF QUIN was also significantly elevated in animals sacrificed at 2 weeks postinoculation compared to those sacrificed at 8-13 week time points. Detailed results and discussion of QUIN data from these animals have been previously reported (Smith et al., 1995).
Discussions

This study demonstrates that at 2 weeks postinfection, neuroinvasion by SIV coincides with significant increases in the density of perivascular macrophages/microglia in cerebral white matter. At this same time point, in situ hybridization experiments indicate that most virus-infected cells in the CNS are within perivascular spaces, intimately associated with adventitia of small vessels, a location most compatible with perivascular macrophages/microglia. Furthermore, combined in situ hybridization/immunohistochemistry shows that these virus-infected cells express the monocyte/macrophage-specific antigen recognized by HAM56. In addition, the widespread distribution of virus in the CNS, demonstrated by in situ hybridization, supports hematogenous dissemination. These data provide compelling evidence, as suggested by the Trojan horse theory (Peluso et al., 1985), that virus enters the CNS via recruitment of infected mononuclear cells from the systemic circulation.

In addition to increased density of perivascular macrophages/microglia at the time of neuroinvasion (2 weeks postinoculation), we observed a peak in CSF QUIN, indicative of intrathecal immune activation. Since activated macrophages/microglia are a potential source of QUIN in the CNS, the increased density of perivascular macrophages/microglia observed morphometrically likely contributes to this rise in QUIN. Increases in the density of perivascular macrophages/microglia, the presence of virus in the CNS, and elevations in CSF QUIN were limited to animals inoculated with SIVmac and SIVmac239. No virus or inflammatory lesions were found in the CNS of SIVmac1A11-inoculated animals. Furthermore, in animals infected with SIVmac1A11, the numbers of perivascular macrophages and CSF QUIN did not differ significantly from uninfected controls. Thus, SIVmac1A11 is not neuroinvasive, despite sharing greater than 98% nucleotide homology with SIVmac239. Whether failure of SIVmac1A11 to invade the CNS is a function of lower viral loads, increased immunogenicity, or other factors is unclear. Unfortunately, it is difficult to attribute biologic behavior of this virus to specific sequence variation since nucleotide differences are scattered throughout the genome. Analysis of such determinants necessitates utilization of molecularly cloned viruses with discrete genetic differences.

In animals inoculated with either SIVmac or SIVmac239, the density of perivascular macrophages/microglia decreased significantly by 13 weeks postinoculation. This decline was accompanied by less frequent isolation of virus from the CSF and a decrease in numbers of virus-positive cells detected by in situ hybridization (Lackner et al., 1994; Smith et al., 1995). Such findings are likely due to the modulating effect of the immune system on viral load in the CNS (Lackner et al., 1994; Smith et al., 1995; VonHerrath et al., 1995). In these animals, decline in viral load in the CNS paralleled a progressive decline in viral burden observed in lymph node, thymus, spleen, and peripheral blood (Lackner et al., 1994). One SIVmac239-inoculated animal (24255) sacrificed at 8 weeks and one SIVmac1A11-inoculated animal (24891) sacrificed at 22 weeks, however, showed markedly elevated perivascular macrophage numbers compared to other animals of shared viral inoculum and duration of infection. Neither of these animals had detectable humoral immune responses and were 'rapid progressors' as previously described (Lackner et al., 1994; Reimann et al., 1994; Zhang et al., 1996).

These data indicate that there is a close relationship between increased density of perivascular macrophages/microglia, viral neuroinvasion, and intrathecal immune activation. This correlation suggests that infected cells are recruited to the CNS from the peripheral circulation. The involvement of specific chemokines and leukocyte-endothelial adhesion molecule interactions have not yet been elucidated. Our earlier observations, which show a clear correlation between endothelial expression of VCAM-1 and SIV encephalitis and a functional role for VCAM-1 in monocyte adhesion to encephalitic brain, suggest that VCAM-1 is a major contributor to leukocyte recruitment and the development of SIV encephalitis (Sasseville et al., 1992; 1994). Furthermore, expression of other adhesion molecules, including ICAM-1, P-selectin, and E-selectin, was not found to correlate with SIV encephalitis or neuroinvasion early in infection (Sasseville et al., 1992; 1995). In the acute phase of disease, however, intensity of VCAM-1 immunostaining failed to show a close relationship with perivascular macrophage numbers, indicating that other factors may contribute to changes in the kinetics of perivascular macrophage recruitment. Marked increase in both VCAM-1 expression and perivascular macrophage/microglial density was observed in animals 24891 and 24255, both 'rapid progressors' with no detectable immune response. Animal 24891 was moribund at 22 weeks postinoculation with SIV encephalitis. Animal 24255 may have developed encephalitis had the disease process been permitted to progress. Increased VCAM-1 expression in animal 24891 supports previous work demonstrating the involvement of this adhesion molecule in the development of SIV encephalitis, but provides little additional insight into leukocyte recruitment mechanism(s) and viral neuroinvasion early in infection. It is likely that recruitment of leukocytes into the CNS and associated viral neuroinvasion are part of a complex process during which upregulation of VCAM-1 expression is a single component. The role of chemokines (Furie and Randolph, 1995) should be examined. Recently, elevations in chemokine MIP-
12 and MIP-1β mRNA have been observed in the brains of HIV-infected patients with the AIDS dementia complex (Schmidtmayerova et al., 1995). These chemokines are potent attractants for monocytes and lymphocytes (Koch et al., 1994; Taub et al., 1993) and likely contribute to monocyte recruitment into the CNS of HIV-infected humans and SIV-infected macaques in conjunction with cytokine-induced adhesion molecules such as VCAM-1 (Nottet et al., 1998).

The data presented do not preclude involvement of infected lymphocytes in viral entry. In fact, work by Hickey et al. (1991) has shown that activated lymphocytes (lymphoblasts) rapidly enter the CNS. However, lymphocytes are a minor component of the cellular infiltrates that characterize encephalitis caused by SIV or HIV. In addition, virtually all the lymphocytes present in the CNS lesions are CD4+, CD8− (Lackner et al., 1991; Pumarola-Sune et al., 1987; Watry et al., 1995). Of more relevance to early events in SIV infection is recent work by vonHerrath et al. (1995). This work has demonstrated that, while lymphocytes are present in the CNS as early as 1 week after infection, they are predominantly CD8+ cytotoxic lymphocytes. The absence of CD4+ lymphocytes in the CNS, either early or late after infection with SIV, and the inability of CD8+ lymphocytes to support SIV or HIV replication render it unlikely that lymphocytes play a major role in neuroinvasion by SIV or HIV.

In conclusion, we demonstrated that a significant increase in the density of perivascular macrophages coincides with viral neuroinvasion and intrathecal immune activation at 2 weeks postinoculation in animals inoculated with pathogenic isolates of SIV. In situ hybridization and combined in situ hybridization/immunohistochemistry demonstrate that virus-positive cells characteristic of perivascular macrophages/microglia express monocyte/macrophage-specific antigen. These findings support the Trojan horse theory of SIV/HIV neuroinvasion and suggest that initial viral entry occurs via turnover of perivascular macrophages/microglia and replacement by circulating monocytes. It is likely that this recruitment is a complex process involving chemoattractants as well as leukocyte-endothelial adhesion molecule interactions. While VCAM-1 is important in the development of SIV encephalitis, the role of additional chemoattractants and other adhesion molecules early in infection during initial viral neuroinvasion needs to be examined.

Materials and methods

Arrows and virus

Twenty-four male rhesus macaques, 22 to 41 months of age, were obtained from the Type D retrovirus- and SIV-free colony at the California Regional Primate Research Center. Animals were randomly divided into three groups of eight and housed in accordance with standards determined by the American Association for Accreditation of Laboratory Animal Care. In addition, four healthy, age-matched animals were sacrificed as normal controls. Investigators adhered to the Guide for the Care and Use of Laboratory Animals prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources, National Research Council.

Prior to inoculation all animals tested negative for antibodies to HIV-2, SIV, Type D retrovirus, and simian T-cell leukemia virus type 1 (STLV-1). Each group was inoculated intravenously with a cell-free stock of uncloned SIVmac, SIVmac239 or SIVmac11. Group One was inoculated with 107.5 50% TCID of uncloned SIVmac (derived from biologic isolate SIV322, provided by R Desrosiers, New England Regional Primate Research Center). Group Two was inoculated with 107.5 50% TCID of the pathogenic clone SIV320 (Kessler et al., 1990). Group Three was inoculated with 107.5 50% TCID of the nonpathogenic clone SIVmac1 (Marthas et al., 1989; 1990). The dosage of SIVmac320 was equal to that of SIVmac239.

In conclusion, we demonstrated that a significant increase in the density of perivascular macrophages coincides with viral neuroinvasion and intrathecal immune activation at 2 weeks postinoculation in animals inoculated with pathogenic isolates of SIV. In situ hybridization and combined in situ hybridization/immunohistochemistry demonstrate that virus-positive cells characteristic of perivascular macrophages/microglia express monocyte/macrophage-specific antigen. These findings support the Trojan horse theory of SIV/HIV neuroinvasion and suggest that initial viral entry occurs via turnover of perivascular macrophages/microglia and replacement by circulating monocytes. It is likely that this recruitment is a complex process involving chemoattractants as well as leukocyte-endothelial adhesion molecule interactions. While VCAM-1 is important in the development of SIV encephalitis, the role of additional chemoattractants and other adhesion molecules early in infection during initial viral neuroinvasion needs to be examined.

Virus isolation

Peripheral blood and CSF were collected immediately before inoculation and at 1, 2, 4, 8, 11, 13, 21 and 23 weeks after inoculation. Virus was isolated from CSF and blood by cocultivation with CEM×174 cells as previously described (Lackner et al., 1994). Culture supernatants were tested biweekly for SIV by p27 capture EIA (Coulter Immunology, Hialeah, Florida). To be considered positive, culture supernatants were required to yield at least 10 ng/ml of SIV p27 at two consecutive time points. Cultures were discarded if virus-negative after 8 weeks.

Quinolinic acid

Quinolinic acid (QUIN) in CSF was quantified by electron-negative chemical ionization gas chromatography/mass spectroscopy as previously described (Heyes and Markey, 1990a, b). Briefly, CSF QUIN and QUIN standards, 3 to 150 pmol, diluted in deionized water, were mixed with 300 μl of deionized water containing 30 pmol of [14O]QUIN as an internal standard. Samples were freeze-dried
overnight and esterified. The dihexafluorosopropional esters were extracted in heptane, and analysed using gas chromatography with a Hewlett Packard quadrupole mass filter (HP5988 Hewlett-Packard, Palo Alto, CA). Endogenous and \(^{14}O\)QUIN were measured as molecular ions. QUIN levels were log transformed and subjected to two-way ANOVA comparing effects of virus and time postinoculation.

Tissue collection, histopathology and immunohistochemistry

Two animals from each group were sacrificed at 2, 8, 13 and 23 weeks postinoculation by intravenous injection of sodium pentobarbital. Representative CNS tissues were fixed in 10% neutral buffered formalin, embedded in paraffin, sectioned at 6 μm and stained with hematoxylin and eosin by routine histologic techniques. Parallel sections were subjected to in situ hybridization and immunohistochemistry. Frozen sections were embedded in optimum cutting temperature compound (OCT, Miles Inc., Elkhart, IN), frozen in freon cooled in liquid nitrogen, sectioned on a cryomicrotome and stored at –70°C until further processing.

To identify perivascular macrophages/microglia we performed immunohistochemistry on paraffin sections with monoclonal antibody HAM56 (Dako, Carpinteria, CA) as previously described (Lackner et al., 1991). This method was found to be superior to frozen sections immunostained with EBM-11 (CD68, Dako) for the purpose of enumerating labeled cells. Monoclonal antibody EBM-11 was not used on formalin-fixed tissues because of inconsistent results. In macaques, the antibody HAM56 recognizes an uncharacterized intracytoplasmic antigen present in perivascular macrophages/microglia and activated parenchymal microglia. Briefly, sections of frontal cortex were deparaffinized and endogenous peroxidase was blocked by immersion in 0.3% hydrogen peroxide in methanol for 5 min. Antigen was unmasked by a 25 min digestion with proteinase K (Dako) diluted 1:50 in 0.05 M Tris- HCl, pH 7.5. Non-specific binding was blocked with 10% normal horse serum for 5 min. The primary antibody, HAM56, was diluted 1:100 and incubated overnight at 4°C followed by incubation with biotinylated horse anti-mouse antibody, then avidin-biotin-conjugated horseradish peroxidase complex (Vector Laboratories, Inc., Burlingame, CA). Diaminobenzidine (DAB) was used as the chromagen. Sections were lightly counterstained with Mayer’s hematoxylin.

To examine the role of VCAM-1 in leukocyte recruitment to the CNS, we performed immunohistochemistry on frozen sections of cerebrum using monoclonal antibody 2G7 (Otsuka America Pharmaceutical, Inc., Rockville, MD) as previously described (Sasseville et al., 1992). The relative intensity of VCAM-1 expression was scored blindly as previously described (Silber et al., 1994).

Quantitation of perivascular macrophages/microglia

Sections of frontal cortex immunostained with HAM56 were examined to assess numbers of perivascular macrophages within cortical white matter using a Quantimet 570c image analyzer (Leica, Cambridge, UK). We focused quantitation of perivascular macrophages on cortical white matter because we observed that, while these cells are diffusely distributed along blood vessels throughout the CNS, virus and parenchymal inflammatory cell infiltrates are (1) intimately associated with vessels and (2) more common in white matter than cortical or deep grey matter. Ten nonoverlapping 200× fields of cortical white matter per animal \((527,640 \mu^2)\) were examined. All vessel profiles within the 10 fields were measured in greatest length and corresponding perpendicular width (vascular dimensions). Occurrence of each perivascular macrophage was recorded as a single event. For the recording of each event, the intervening vascular dimensions were summed. The frequency of perivascular macrophages/microglia was expressed as a quotient (cells/millimeter of vascular endothelium). The mean, range, and standard error for the number of perivascular macrophages per millimeter of vascular endothelium were calculated for each animal. Differences in mean perivascular macrophage density among postinoculation intervals and viral isolates were examined using ANOVA followed by post hoc testing using Fischer’s Protected Least Significant Difference Statistic (Statview 4.1 statistics software, Abacus Concepts, Inc., Berkeley, CA).

In situ hybridization and combined in situ hybridization/immunohistochemistry

To examine the distribution of SIV in CNS parenchyma, paraffin-embedded sections of brain adjacent to those used for routine histopathology and immunohistochemistry (HAM56) were examined by in situ hybridization using a \(^{35}S\)-labeled DNA probe encompassing the entire gag, pol and env regions of SIV as previously described (Lackner et al., 1994). Controls included SIV-infected and uninfected T cells (HUT78), matched tissues from uninfected macaques and probe derived from nick-translated plasmid vector pSP64.

On selected brain sections, combined in situ hybridization/immunohistochemistry was performed as previously described (Heise et al., 1994). Briefly, in situ hybridization for SIV was performed followed by immunohistochemistry for HAM56 immediately after posthybridization washes as described above except that 3-amino-9-ethylcarbazole (red precipitate) was used as the chromogen. Slides were then rinsed and air-dried before coating with emulsion and then exposed for 1 to 2 weeks at 4°C.
Acknowledgements
We thank Norval King for careful review of the manuscript, Mike Mansour and Meredith Simon for technical assistance with image analysis and Alison Hampson for photographic assistance. This work was supported by Public Health Service grants NS30769 from the National Institute of Neurologic Disorders and Stroke, A125644 from the National Institute of Allergy and Infectious Diseases, and RR07000, RR00169 and RR00168 from the National Center for Research Resources.

References

