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Patients infected with human immunodeficiency virus (HIV) develop
immunologic dysfunction and multiorgan inflammatory diseases directly
associated with HIV-1 infection. Of these inflammatory diseases, the most
devastating to the HIV-infected patient is involvement of the central nervous
system (CNS). The pathogenesis of the clinical syndrome observed in these
patients, termed HIV-associated dementia, remains poorly understood.
However, as most of the detectable virus in the CNS is in cells of monocyte/
macrophage lineage, it is clear that penetration of the blood-brain barrier by
HIV-1 and the subsequent influx of monocytes into the brain are crucial
components in the neuropathogenesis of HIV-associated dementia. Using the
SIV-infected macaque model of acquired immunodeficiency disease, much has
been learned about viral neuroinvasion occurring soon after experimental
infection. The aim of this review is to discuss these recent advances and provide
insight into plausible mechanisms for monocyte entry into the CNS.
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Introduction

Approximately 25% of human immunodeficiency
virus type 1 (HIV-1)-infected individuals develop
neurologic disease (Janssen et al, 1991; McArthur,
1996). The clinical syndrome observed in these
patients, termed HIV-associated dementia, is char-
acterized by a range of cognitive, motor and
behavioral changes (Michaels et al, 1988; Persidsky
et al, 1995; Price et al, 1987, 1988). A correlation
between HIV-associated dementia and the presence
of HIV-1 in the central nervous system (CNS) (Wiley
and Achim, 1994), dendritic pathology (Masliah et
al, 1992), neuronal loss (Everall et al, 1991; Ketzer
et al, 1990), the spatial pattern of neurons (Asare et
al, 1996) and increased numbers of macrophages in
the brain (Glass et al, 1995) has been shown.
Despite these advances, the pathogenesis of HIV-
associated dementia remains an enigma.

Many individuals with HIV-associated dementia
also have HIV encephalitis (HIVE). HIVE is defined
by the presence of charactersitic histopathologic
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changes and/or detectable HIV-1 nucleic acid or
antigen in the CNS (Budka et al, 1991b). The typical
lesions of HIVE are astrocytosis, glial nodules and
parenchymal and perivascular infiltrates of macro-
phages and multinucleate giant cells (Kure et al,
1990; Nielsen et al, 1984; Price et al, 1988; Wiley et
al, 1986). HIV antigens, nucleic acid and viral
particles have been consistently localized to macro-
phages/microglia in these lesions (Epstein et al,
1985; Gyorkey et al, 1987; Koenig et al, 1986).
Evidence for infection of astrocytes, oligodendro-
cytes, endothelial cells and neurons is less convin-
cing (Koenig et al, 1986; Moses et al, 1993; Saito et
al, 1994; Tornatore et al, 1994; Wiley et al, 1986).
Thus, as productive HIV-1 infection in HIVE is
primarily confined to macrophage/microglial infil-
trates in the CNS, the mechanisms of neuronal
dysfunction are unclear. For these reasons research
on the pathogenesis of this disorder has focused on
indirect mechanisms of neuronal dysfunction and
death (Bernton et al, 1992; Brenneman et al, 1988;
Genis et al, 1992; Giulian et al, 1990; Lipton, 1991;
Pulliam et al, 1991). These studies suggest that the
keystone of HIV-associated dementia is the HIV-1-
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infected brain macrophage/microglial cell that
either produces or induces other CNS resident cells
to release factors that ultimately result in neuronal
injury. Thus, while a direct relationship between
HIV-infected macrophages/microglia and neuro-
pathology is evident, the association between
neuropathology and the clinical disorder remains
controversial (Wiley and Achim, 1995). Nor do we
understand the inciting mechanisms responsible for
initial monocyte/macrophage recruitment to the
brain during HIV-1 infection.

SIV-infected macaque monkey model

Similar to HIV-1-infected patients, many simian
immunodeficiency virus (SIV)-infected macaque
monkeys develop lentivirus-induced encephalitis
(SIV encephalitis, SIVE) (Table 1). SIVs are immu-
nosuppressive nonhuman primate lentiviruses that
have extensive sequence homology, morphology,
and biologic properties similar to HIV-1 and HIV-2
(Desrosiers et al, 1990). As with HIV-1, the target for
SIV infection in vivo and in vitro (Desrosiers et al,
1991; Lackner et al, 1991; Ringler ef al, 1989; Wyand
et al, 1988) is the CD4 molecule expressed on
lymphocytes and monocyte/macrophages. More-
over, as with HIV-1, SIV isolated from encephalitic
brains has been shown to be macrophage-tropic
(Desrosiers et al, 1991; Simon et al, 1992, 1994;
Watkins et al, 1990; Wiley and Budka, 1991). Even
when animals are infected with molecularly cloned
lymphotropic virus (eg SIVmac239), approximately
30% of infected animals develop highly macro-
phage-competent variants (Desrosiers et al, 1991).
Macrophage tropism of SIVmac239 variants and
high levels of virus replication in the CNS have been
associated with specific sequence changes in the env
gene (Kodama et al, 1993; Mori et al, 1992). Thus, as
neuronal dysfunction in many patients with HIV-
associated dementia is most likely a result of
macrophage/microglial infection (Budka, 1991),
the SIV-infected macaque monkey is an excellent
model for examining how monocytes/macrophages
infiltrate the CNS.

Table 1 Comparison of human and simian immunodeficiancy
virus infection of the nervous system

HIV SIV

Encephalitis

multinucleate giant cells + +

vascular orientation + +

mineralization pediatric cases  juvenile/adults

atrophy + +

white matter pallor + —
Myelitis

multinucleate giant cells + +

vacuolar myelopathy + rare
Behavioural alterations + +

Peripheral neuropathy + _
Opportunistic infections common in rare
adults

Early events in lentivirus invasion of the CNS

A major unanswered question is why only a portion
of HIV-infected patients and SIV-infected monkeys
develop HIVE and SIVE. There is a strong associa-
tion between macrophage-tropism and HIVE/SIVE.
There is also evidence that the host immune system
plays a major role in controlling viral infection in
the CNS (Bell et al, 1993; Nathanson et al, 1994). To
answer this question, one has to look at how virus
and host interact early in infection. Soon after
infection, during peak viremia which occurs just
prior to or at the time of seroconversion (Gaines et
al, 1987), HIV-1 is frequently isolated from the
cerebrospinal fluid (CSF) in both symptomatic
(Albert et al, 1987; Gaines et al, 1987; Gouldsmit
et al, 1986; Ho et al, 1985) and asymptomatic
(Chiodi et al, 1986, 1988; Sinclair et al, 1992)
patients. A subpopulation of patients will develop
an acute meningoencephalitis (Carne et al, 1985;
Cooper et al, 1985). Generally, following this acute
phase of primary lentivirus infection, the onset of
an immune response is associated with a decrease
of HIV antigen and virus in the CNS (Gaines et al,
1987; Gouldsmit et al, 1986). During this asympto-
matic phase of infection, neurologic signs may be
absent, but patients may have chronic or subacute
meningoencephalitis. Patients who progress to
advanced HIVE usually have decreased immune
function with a transition to symptomatic AIDS
(Bell et al, 1993; Chiodi and Fenyd, 1991; Michaels
et al, 1988; Price et al, 1987; Rhodes, 1993; Sharer et
al, 1991). Similarly, in macaque monkeys infected
with SIV there is a very early burst in viral
replication in both lymphoid organs and the CNS.
We have shown that even molecularly cloned
lymphotropic virus (SIVmac239) induces an acute
meningoencephalitis indistinguishable from that
induced by other pathogenic isolates of SIV by 2
weeks postinoculation (Lackner et al, 1994). These
initial rounds of viral replication decrease as the
host immune system responds (Lackner et al, 1994;
Reimann et al, 1994). In the CNS, as in the lymphoid
tissues, both SIV-specific cytotoxic lymphocytes
and antibody are involved (Smith et al, 1995; Von
Herrath et al, 1995). Similar to HIV-infected
patients, as the disease progresses and the immune
system fails, a portion of the animals develop SIVE.
Thus, sometime early in infection or during the
asymptomatic period unique viral and host factors
in conjunction with viral entry into the CNS are
likely responsible for progression to SIVE. In order
to elucidate the pathogenesis of this complex
disease, factors involved in viral entry into the
brain have to be closely examined at the level of
initial leukocyte interaction with CNS endothe-
lium.

Leukocyte and endothelial interactions
It is widely assumed that HIV-1 enters the brain
within monocytes (Trojan horse theory) (Peluso et



al, 1985). Whether these monocytes migrate into the
brain as part of the normal replacement of resident
perivascular macrophages or in response to activa-
tion and subsequent chemotactic stimuli is un-
known. In addition, the role of the endothelial cell
may be crucial. To address these questions, one has
to consider the unique interplay of circulating
leukocytes and CNS endothelium. The brain is one
of the ‘privileged’ sites in the body: the circulatory
system and the CNS parenchyma are physically
separated. This separation, called the blood-brain
barrier (BBB), is maintained by tight junctions
between brain endothelial cells, intact basement
membranes, and the perivascular glia limitans
composed of astroglial and perivascular macro-
phage cell foot processes (Lassmann et al, 1991).
Of these components, macrophages/microglia are
the primary cells infected with HIV/SIV and thus
the focus of attention for pathogenesis studies.
There are five separate populations of brain
macrophages: the parenchymal (resident micro-
glia), choroid plexus, meningeal, gitter cell, and
perivascular. Of these, the meningeal and perivas-
cular macrophages may play a significant role in
antigen presentation and activation of immune
responses (Altman, 1994; Hickey et al, 1991; Hickey
and Kimura, 1988; Lassmann et al, 1991). Although
phenotypically and functionally similar to non-CNS
tissue macrophages and parenchymal microglia,
these perivascular macrophages may differ in origin
and turnover rate in both normal and inflamed CNS
(Lassman et al, 1993). In normal adult rodent and
human brain, it has been shown that perivascular
macrophages are replaced continuously via recruit-
ment from the circulating monocyte pool through
the intact BBB (Hickey and Kimura, 1988; Lawson
et al, 1992; Unger et al, 1993). Thus, HIV/SIV-
infected monocytes may enter the CNS parenchyma
in the absence of concurrent inflammation (Figure
1). Furthermore, studies in Lewis rats have demon-
strated that recruitment of perivascular macro-
phages is accelerated during CNS inflammation,
while the resident parenchymal microglia are
seldom replaced by hematogenous cells (Lassman
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Figure 1 Theorectical model of cell-associated SIV invasion of
the CNS utilizing normal leukocyte trafficking mechanisms
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et al, 1993). Moreover, activated macrophages can
in turn activate other cell types, notably, astrocytes
and endothelium, via secretion of IL-1f, TGF-f, and
TNF-« (Giulian et al, 1986; Selmaj et al, 1990). IL-1f
and TNF-o are potent inducers of endothelial
adhesion molecules in vitro and in vivo (Bevilacqua
and Nelson, 1993; Bevilacqua et al, 1985; Briscoe et
al, 1992; Dustin et al, 1986) and probably are crucial
in recruitment of leukocytes to the CNS in HIVE.
Thus, HIV/SIV-infected circulating monocytes may
be a source of CNS infection via the natural or
accelerated replacement of perivascular macro-
phages (Figure 1). In our studies using the acutely
SIV-infected macaque monkey model, neuroinva-
sion by SIV has been associated with intrathecal
immune activation (Sasseville et al, 1995; Smith et
al, 1992). Significant increases in the density of
perivascular macrophages/microglia coincide with
viral neuroinvasion and marked elevation of CSF
quinolinic acid (Lane et al, 1996). Moreover, in
support of the Trojan horse theory, combined in situ
hybridization and immunohistochemistry demon-
strate that these infected perivascular cells are
macrophages/microglia (Lane et al, 1996).

Studies in rats have also demonstrated that T-
lymphoblasts, but not mature T-cells, randomly
enter the CNS (Figure 1). However, in the absence of
specific antigen recognition they exit within 1 to 2
days (Hickey et al, 1991) (Figure 1). Thus, HIV/SIV-
infected T-lymphoblasts may also be a potential
source of initial HIV-1 infection of the CNS. What
effect normal or augmented cell trafficking to the
CNS has on the development of HIV-induced CNS
disease is unknown and needs to be examined.

Role of adhesion molecules and chemokines in
neuroinvasion

Although the mechanisms governing recruitment of
leukocytes to the CNS from the systemic circulation
are not fully characterized, upregulation of leuko-
cyte and endothelial adhesion molecules and
chemoattractants (eg chemokines) are likely critical
components (Miller and Krangel, 1992; Springer,
1994). It is well established that the sequential
interactions of selectins, integrins and members of
the immunoglobulin gene superfamily and their
corresponding ligands are crucial for leukocyte
rolling, firm adhesion, and transendothelial migra-
tion at sites of tissue injury (Springer, 1994). In fact,
numerous in vivo studies have demonstrated that
monoclonal antibody blockade of these pathways
significantly reduces the influx of cellular infil-
trates into inflamed tissues. For instance, in rodent
experimental allergic encephalomyelitis (EAE), a
model of multiple sclerosis, mononuclear cell
infiltrates were abrogated by blockade of the
VCAM-1/24f1 pathway (Baron et al, 1993; Yednock
et al, 1992). Likewise, we have demonstrated
upregulated VCAM-1 in macaque monkeys with
SIVE and documented that VCAM-1/24f1 interac-
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tions are involved in monocyte adherence to
endothelium in encephalitic brain (Sasseville et
al, 1992, 1994). In addition, human brain micro-
vascular endothelial cells cocultured with activated
HIV-infected monocytes express elevated levels of
VCAM-1 and E-selectin (Nottet et al, 1996).
Elevated levels of these two adhesion molecules
paralleled the levels of HIV-1 gene products and
proinflammatory cytokines in encephalitic brain
from HIV-1-infected patients (Nottet et al, 1996).
Studies utilizing the SCID mouse model of HIVE
demonstrate the direct relationship between macro-
phage/microglia activation, which occurs in re-
sponse to neuroinvasion of HIV-1-infected
monocytes, and subsequent VCAM-1 expression
by CNS endothelial cells and monocyte infiltration
into the CNS (Persidsky et al, 1996). Taken together,
these studies strongly support a role for cytokine-
induced endothelial adhesion molecules in leuko-
cyte recruitment to the CNS in HIVE/SIVE.

In addition to the interactions of leukocyte and
endothelial adhesion molecules, monocytes are also
activated and migrate in response to chemotactic
gradients elicited from inflammatory sites (Furie
and Randolf, 1995; Springer, 1994). Pivotal compo-
nents of this process are a group of chemotactic
cytokines, termed chemokines. Chemokines are
structurally related, low-molecular-weight, proin-
flammatory proteins that are induced in various cell
types (including endothelial cells and leukocytes)
and are distinct from classical chemoattractants in
that they affect the migration of specific subsets of
leukocytes (Schall et al, 1990, 1993; Taub et al,
1993). Based on the presence or absence of an amino
acid separating the first pair of cysteines, they are
divided into two subfamilies (« or C-X-C and f or C-
C chemokines). For the most part, the C-X-C
chemokines stimulate and attract neutrophils,
whereas the C-C chemokines activate and attract
monocytes, lymphocytes and eosinophils (Furie
and Randolf, 1995; Loetscher et al, 1994b; Rot et
al, 1992; Schall et al, 1993). Although these
chemokines are potent mediators of inflammation,
recent studies have focused on their antiviral
properties.

The C-C chemokines, RANTES (regulated on
activation normal T cell expressed and secreted)
and macrophage inflammatory protein-1« and -f
(MIP-1¢ and f) have been shown to be major HIV-
suppressive factors released by CD8* cells (Cocchi
et al, 1995). Another group of investigators
showed elevated levels of these three chemokines
in purified populations of CD4* lymphocytes from
HIV-negative individuals who were repeatedly
exposed to HIV (Paxton et al, 1996). Moreover,
they showed that these CD4* lymphocytes were
more resistant to in vitro infection with multiple
primary isolates to HIV-1 than were CD4* lympho-
cytes isolated from nonexposed individuals (Pax-
ton et al, 1996). Exactly how these chemokines

exerted their effect was not resolved in these
studies. For years investigators have been search-
ing for a coreceptor that acts in conjunction with
CD4, which dictates T cell- and/or macrophage-
tropism of HIV/SIV isolates. Recently, Feng et al.
reported that a fusion receptor (‘fusin’ or LESTR)
along with CD4 enables T cell line-tropic HIV
isolates to infect lymphocytes (Feng et al, 1996).
Moreover, antibodies against LESTR/fusin blocked
envelope-mediated fusion and viral entry into
susceptible cells (Feng et al, 1996). This cofactor,
a putative seven-transmembrane, G protein-
coupled receptor is similar (37% amino acid
identity) to the receptor for the C-X-C chemokine
interleukin-8 (Feng et al, 1996; Loetscher et al,
1994a). More recently, the lymphocyte chemoat-
tractant stromal cell-derived factor-1 (SDF-1) has
been shown to be the natural ligand for LESTR/
fusin (Bleul et al, 1996; Oberlin et al, 1996). In
cells expressing CD4 and LESTR/fusin, SDF-1
inhibits infection by T-cell tropic strains of HIV
(Bleul et al, 1996; Oberlin et al, 1996). Therefore,
some chemokine receptors may function as fusin
cofactors, but MIP-1«, MIP-1 and RANTES do not
bind to LESTR/fusin. Which receptors are respon-
sible for the antiviral activity of MIP-1a, MIP-1f
and RANTES? Many independent groups have
identified the C-C chemokine receptor 5 (CC-
CKR5) as the major coreceptor for macrophage-
tropic strains of HIV-1 (Choe et al, 1996; Deng et
al, 1996; Doranz et al, 1996; Dragic et al, 1996).
However, additional chemokine receptors, CC-
CKR2b and CC-CKR3, are utilized by other HIV-1
isolates (Choe et al, 1996; Doranz et al, 1996). In
agreement with earlier observations that macro-
phage-tropism of HIV/SIV isolates is determined
by sequence variations in the V3 loop of HIV-1
gp120 (Korber et al, 1994; Power et al, 1994). Choe
et al demonstrated that the utilization of specific
chemokine receptors by T cell- or macrophage-
tropic isolates was dictated by the sequence of the
V3 region (Choe et al, 1996). Thus, these findings
demonstrate that some monocyte-tropic strains of
HIV-1 utilize C-C chemokine receptors (eg CC-
CKR5) as coreceptors for infection, whereas T cell-
tropic HIV-1 strains use C-X-C receptors (eg
LESTR/fusin).

Despite strong in vitro data demonstrating the
antiviral properties of certain chemokines, in vivo
data from our laboratory and others reveal that
elevated chemokines do not appear to prevent virus
infection in the CNS. Brain from patients with HIV-
associated dementia showed more MIP-1«¢ and MIP-
1 mRNA than brain from HIV-infected patients
without dementia (Schmidtmayerova et al, 1996).
Recently, we have demonstrated that encephalitic
brain from SIV-infected animals has elevated
immunohistochemical expression of MIP-1a, MIP-
15, RANTES, monocyte chemotactic protein-3
(MCP-3), and interferon-inducible protein-10 (IP-



10) (Sasseville et al, 1996). These results in SIV-
infected macaque monkeys and HIV-infected pa-
tients demonstrating elevated immunohistochem-
ical expression of chemokines on endothelium and
perivascular infiltrates in encephalitic brain con-
taining abundant virus suggest that at least in the
brain these chemokines play no role in containing
viral replication, and probably function as media-
tors of inflammation. MIP-1o and MIP-1f are potent
chemoattractants for monocytes and lymphocytes
(Koch et al, 1994; Taub et al, 1993) and in
conjunction with cytokine-induced adhesion mole-
cule expression provide a likely mechanism for
monocyte recruitment to the CNS in HIV-infected
patients. However, the in vivo role of chemokines in
HIV infection remains to be determined.

Summary

From our time-course studies of SIV-infected
macaque monkeys early after experimental infec-
tion, we have begun to unravel some of the complex
interactions in initial viral neuroinvasion. In agree-
ment with the Trojan horse theory of neuroinvasion,
we have demonstrated that, independent of cellular
tropism of the initial virus (macrophage- or T cell-
tropic), SIV enters the CNS within 2 weeks of
infection. Coincident with viral neuroinvasion,
there is a significant increase in the density of
perivascular macrophages/microglia and evidence
of macrophage activation (i.e. increased quinolinic
acid levels). We hypothesize that virus within
infected circulating monocytes enters the CNS by
natural or increased trafficking mechanisms (Figure
1). Once extravasated, these virus-infected acti-
vated monocytes differentiate and become further
activated and release cytokines and chemokines
that stimulate surrounding resident cells (eg,
macrophage/microglia, astrocytes, endothelium)
(Figure 2). In particular, the CNS endothelium
produces and binds chemokines, increasing the
chemotactic gradient, and increases expression of
cytokine-inducible adhesion molecules that bind
circulating leukocytes, augmenting leukocyte re-
cruitment (Figure 2).

With the onset of an immune response to SIV,
virus recovery from the CSF, the density of
perivascular macrophages and quinolinic acid
levels decrease sharply. However, the few animals,
termed rapid progressors, that fail to mount a
significant immune response to SIV generally have
the highest density of perivascular macrophages
and VCAM-1 expression. Some of these animals
will develop fulminant SIVE. Thus, early after
infection there is a strong association between lack
of an immune response to SIV and the development
of SIVE.
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Figure 2 Theorectical model of recruitment of SIV-infected
leukocytes via activated CNS endothelium. SIV-infected leuko-
cytes enter the CNS through normal or enhanced trafficking
mechanisms causing localized endothelial activation (chemokine
release and upregulation of adhesion molecules). Additional
circulating activated SIV-infected leukocytes (particularly mono-
cytes) with upregulated surface integrin receptors (1) selectivity
bind to activated endothelium (2); penetrate the blood-brain
barrier (3); differentiate into perivascular macrophages and
become further activated (4), and release additional cytokines
and chemokines augmenting the chemoattraction and adhesion
molecule expression on surrounding leukocytes and endothe-
lium (5). This results in increased recruitment of leukocytes into
the CNS further amplifying the process

The pathogenesis is less clear in the animals that
are able to mount an initial immune response to SIV
and to clear virus from the CNS but subsequently
develop terminal SIVE. We know that adhesion
molecule and chemokine expression is elevated in
all animals with SIVE, whether they are classified as
rapid progressors or not. Thus, in terminal AIDS is it
the enhanced localized expression of adhesion
molecules and chemokines and increased cellular
trafficking to the CNS that allows SIV to reenter the
CNS, or is the virus crossing the BBB first and the
subsequent induction of these factors that set the
stage for SIVE to develop?
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