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Transgenic animal models for neurocarcinogenesis have provided signi®cant
insights into the molecular mechanisms underlying carcinogenic processes,
including those which affect the nervous system. In view of the very rapid pace
of acquisition of knowledge, it is not possible to cover all transgenic mouse
models for neural tumors. Instead, this article discusses some of the most
important technical innovations for manipulation of the mammalian genome
(notably the various methods for targeted genome modi®cations, as well as the
technology for introducing large DNA fragments into the germ line of mice), and
presents a selection of the transgenic mouse models which are proving most
promising for furthering our understanding of the pathogenetic basis of cancer
in the nervous system.

Keywords: transgenic mice; neurocarcinogenesis models; knock out mice

The new tools of transgenesis

Although transgenic mice continue to be highly
complex systems (Hanahan, 1989), the last years
have witnessed signi®cant technical improvements
in the ®eld of transgenesis, and many long-standing
problems can now be overcome. The conventional
method of generation of transgenic mice by pro-
nuclear microinjection leads to random integration
of an unde®ned number of copies of the construct
of interest. While fast and often very ef®cient, this
approach is fraught with signi®cant drawbacks,
notably poor or unpredictable expression levels,
and ectopic expression of the transgene in unde-
sired tissue compartments. These problems have
been solved by utilizing embryonic stem cell lines
(ES), which are derived from pre-implantation
mouse embryos. ES cells are totipotent: when
introduced into a host blastocyst, or aggregated
within a morula-stage embryo, they fully participate
to embryogenesis upon introduction into foster
mothers and give rise to all tissues normally
encountered in the mouse.

While the most popular use of ES cells has been to
generate knockout mice by ablating speci®c seg-
ments of the mouse genome, one can also introduce
transgenes into mice using ES cells. Animals
hosting ES cells are chimeras, consisting only
partially of transgenic cells. While fully transgenic
animals can be produced by cross-breedings, lethal
dominant mutations, which would not allow for
development of a transgenic mouse, can be often
studied in chimeric transgenic animals (Boulter et
al, 1991; Hilberg et al, 1993).

An exciting example use of this technology was
recently exempli®ed by the fusion of AF9 sequences
with the mouse Mll gene, which mimics a fusion gene
produced by a chromosomal translocation in human
acute myeloid leukemias (AML). Chimaeric mice
carrying the Mll-AF9 fusion developed AML, despite
expression of the transgene in many tissues. Beside
providing a useful tool for directing a transgene to a
precise chromosomal location, this study formally
proves the causal role of the Mll-AF9 sequence
translocation in myeloid leukemogenesis (Corral et
al, 1996).

A further re®nement of the homologous recombi-
nation technology is Cre/loxP-mediated site-speci-

Correspondence: A Aguzzi
Received 2 October 1997; revised 16 January 1998; accepted 20
January 1998

Journal of NeuroVirology (1998) 4, 159 ± 174

ã
http://www.jneurovirol.com

1998 Journal of NeuroVirology, Inc. 



®c recombination. The bacterial Cre protein is
capable of mediating sequence-speci®c recombina-
tion of loxP sites, resulting in excision of interven-
ing DNA sequences. The distance between the two
loxP sites can be at least as large as 400 kb (Li et al,
1996), allowing for ablation of extremely large loci.
Not only with ES cells exposed to Cre protein in
vitro undergo loxP recombination: also transgenic
mice expressing the Cre protein in speci®c tissues
will ablate genes included between loxP sites
(DiSanto et al, 1995; Gu et al, 1993; Rickert et al,
1997; Zou et al, 1994).

Another problem related to transgene integration
concerns the presence of regulatory sequences
driving a selectable marker (which, for example,
encodes resistance to a certain drug), which may
interfere with expression of the transgene that is
being studied or with genes adjacent to it. The CRE-
loxP system can eliminate such additional se-
quences as long as the two loxP sites are in the
same orientation. Meanwhile, the Hprt (hypox-
anthine phosphoribosyl transferase) locus of the
mouse has become a popular site of gene targeting.
This locus has been extensively characterized, and
allows selection for presence or for absence of
enzymatic activity. Moreover, being located on the
X chromosome, it is hermizygous in male animals.
In the model of Bronson et al. (Bronson et al, 1996),
the mutated Hprt becomes the target for correction
of the gene, and the correcting transgene is placed
upstream of the locus. This procedure avoids the
uncertainties of random integration events: since
Hprt is widely expressed in the mouse, ES clones
display very reproducible, high expression levels.
The `upstream targeting' characteristic of this model
seems to be less prone to promoter occlusion effects
that had biased other vector systems.

Several approaches have been developed to
achieve transgene inducibility. This can be
achieved using expression vectors controlled by
derivatives of tetracycline (Kistner et al, 1996;
Shockett et al, 1995). Doxycycline is very stable
and can be even added to the water supply of the
animals, and subtle modi®cations of the tet-
responsive site allow for tet-based repression as
well as induction of the transgene. Since the
concentration range for induction is different from
that needed for repression, one can even express
two transgenes in vivo which will be independently
controlled by variations in doxycycline concentra-
tion (Baron et al, 1997; Bohl and Heard, 1997).

Linkage of the Cre gene to the tet-inducible
construct allows recombination to be induced in
vivo upon administration of doxycycline (St Onge et
al, 1996). Several groups have developed inducible
systems utilizing an insect steroid hormone (ecdy-
sone) transduction pathway system (Li et al, 1997a;
No et al, 1996). However, their applicability to a
wider range of transgenic models remains to be
determined.

The expression of many genes is crucially
determined by locus control regions, which may
be located very far away from the coding sequences.
This problem can be addressed by the use of very
large vectors, such as PACs (P1 arti®cial chromo-
somes), BACs (bacterial arti®cial chromosomes),
YACs (yeast arti®cial chromosomes) and HACs
(human arti®cial chromosomes). Although both
PACs and BACs can clone insert sizes up to
350 kb, transgenesis has so far only been achieved
with YACs and, in very few instances, with HACs.

Various methods have been successfully utilized
for transfecting YAC DNA into ES cells. Initial
attempts exploited PEG-induced fusion between ES
cells and YAC-containing yeast spheroblasts and
selection markers (such as neomycin phosphotrans-
ferase), albeit with moderate ef®ciency. YAC DNA
could also be transfected into ES cells upon
complexing with liposomes. This method probably
offers the best results in terms of DNA integrity. The
most widely utilized method for YAC transduction,
however, is pronuclear microinjection. Microinjec-
tion of YACs is more dif®cult than the generation of
conventional transgenic mice, because very large
molecules can easily break, and calls for the use of
agents which protect DNA from shearing. The
ef®ciency of transgenesis with YACs is not always
lower than that of conventional fragment micro-
injection: transgene integration was seen in 10 ±
14% of embryos microinjected with a 248 kb
human b-globin YAC (Peterson et al, 1993) and in
up to 17% with a 250 kb mouse tyrosinase YAC
(Schedl et al, 1993).

Additional strategies for creating YAC transgenes
include the creation of several lines with a series of
overlapping clones, as well as `binary systems' in
which animals containing speci®c cis-controlling
sequences are bred with animals containing speci®c
trans-acting factors (Li et al., 1997b). Some of the
best studied models relate to the introduction of the
human b-globin locus into transgenic mice (Peter-
son, 1993, 1995, 1996). The original 248 kb YAC
contained the ®ve functional globin genes as well as
upstream (39 kb) and downstream (82 kb) ¯anking
sequences. The upstream ¯anking sequences con-
tain the locus control region (LCR). The globin
transgene appears to operate very similarly to the
human locus: the e-globin gene is expressed very
early during gestation. At this time, a ®rst switch
occurs which induces the synthesis of g-globin in
the yolk sac, which lasts till the second switch,
which stimulates b-globin expression. The latter is
maintained in adult life. This technology has
allowed to study the hereditary persistence of fetal
hemoglobin (HPFH), which is not associated with
large deletions of d-b genes and surroundings.
Introduction of a base pair substitution which had
been identi®ed in HPFH produced a delayed switch
in fetal liver as well as persistent expression of g-HB
in adult life. Also, b-globin YAC transgenic mice
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were mated with mice expressing high levels of the
GATA-1 transcription factor. The results indicate
that the latter is essential not only for the activation
but also for proper repression of globin genes.

Models involving dominant oncogenes

Several transgenic neuro-oncological models have
been developed in the past. In the following, we
will limit our review to the models developed after
1995: for earlier work the reader is referred to our
previous article (Aguzzi et al, 1995). We will
particularly emphasize those models which em-
ployed technical innovations as well as those which
seem to open new horizons in the ®eld of
neurooncology.

Pinealoblastomas

Pinealocytes have been extensively studied because
they can originate neuroectodermal tumors, and
also for their role in the circadian clock. The
promoter of tryptophan hydroxylase (TPH) has been
also employed to speci®cally direct transgene
expression to neuroendocrine cells. A transgene
encompassing a 6.1 kb TPH promoter fragment
directed expression of lacZ to the raphe nucleus
and the pineal gland (Huh et al, 1994; Son et al,
1996). Fusion of the TPH promoter to the SV40
large T antigen caused the appearance of very
aggressive and invasive pineal tumors in transgenic
animals causing their death at 12 ± 15 weeks of age
(Son et al, 1996).

Neuroblastoma

Neuroblastoma, the most common extracranial
tumor of early childhood, often shows typical
genetic lesions, such as deletion of the 1p36.1-2
locus (D1p), where a tumor suppressor gene for
human neuroblastoma is presumed to reside.
Several attampts to identify the latter gene among
at least seven different candidates have failed so far
(Brodeur 1995; Brodeur et al, 1997). Furthermore,
susceptibility to familial neuroblastoma is not
linked to 1p36.1-2 (lod scores of ca 74) (Maris et
al, 1996; Rovigatti 1997). The N-myc proto-onco-
gene seems to play an important role in the
ontogenesis of this tumor. Typically, N-myc ampli-
®cation (NMA) is found in 25 ± 30% of neuroblas-
tomas, and involves aggressive, higher-stage disease
(Brodeur et al, 1984, 1985, 1988a; Shimada et al,
1995). N-myc may therefore be a marker of
progression. Alternatively, two distinct types of
neuroblastoma may exist, and the more aggressive
form is characterized by NMA (Brodeur 1995;
Rovigatti 1992; Tsuchida et al., 1996), particularly

since patients with lower stage tumors (character-
ized by the presence of aneuploid karyotypes and
absence of NMA and D1p) never progress to tumors
with NMA and D1p (Brodeur et al, 1997). More
than 90% of high stage neuroblastomas display both
NMA and D1p (Brodeur et al, 1988b; Fong et al,
1989, 1992).

Although animal models of neuroblastoma have
been presented in the past, they did not re¯ect all
peculiarities of the human condition (Aguzzi et al,
1990, 1992). Despite considerable overexpression of
N-myc in tumors arising in these mice, the
characteristic genetic aberrations described in hu-
man neuroblastoma, i.e. ampli®cation of N-myc
(NMA) and deletions on the short arm of chromo-
some 1 (D1p, where a tumor suppressor gene for
human neuroblastoma is presumed to reside), were
not faithfully reproduced in the available models. A
recent transgenic model has provided the ®rst
formal proof of the tumorigenic potential of N-myc
in vivo (Weiss et al, 1997). Here, the promoter of the
tyrosine hydroxylase gene was linked to the cDNA
of N-myc. The resulting transgenic lines developed
neuroblastomas with an incidence of 5 ± 20% at 3 ±
6 months of age. Frequency of tumorigenesis was
increased to 75% at 10 months by crossing these
transgenics with mice hemizygous for either Nf-1 or
RB1, and approached 100% at 4 months when the
N-myc transgene was bred to homozygosity. How-
ever, also in this mouse model, secondary genetic
lesions did not always coincide with those of
human neuroblastoma. Signi®cant chromosomal
additions were found in regions syntenic with
human chromosomes 6 and 17p (while most of the
chromosomal gains in human neuroblastoma are on
17q21.3-qter) and losses for regions syntenic with
chromosomes 4, 11, 3 and X. Deletions in regions
syntenic with human chromosome 1p36.2-3 were
conspicuously absent (Weiss et al, 1997). Intrigu-
ingly, secondary chromosomal changes were not
documented in all mice. This suggests that the
identi®ed additional lesions may not always be
necessary for tumor progression, and that they may
be complemented for by higher by N-myc expres-
sion.

Astrocytic tumors

Mice expressing the SV-40 large T antigen from the
regulatory region of the glial ®brillary acidic protein
(GFAP) gene (Danks et al, 1995) developed brain
tumors at an extremely early age and rapidly
progressed to death within 3 weeks after birth.
Two animals developed somewhat milder symp-
toms and progressed to death at about 28 ± 30 days
of age: they were de®ned as `late' tumors. The
tumors were described as composed by atypical
cells in the periventricular subependymal zone.
SV40 large T antigen-expressing cells were scat-

Transgenic models of neurocarcinogenesis
U Rovigatti et al

161



tered throughout the brain: they also appeared
atypical and frequently mitotic. An additional
abnormality was hyperplasia of the choroid plexus.

T-antigen positive cells were detached in the
peripheral nervous system (PNS) in cells identi®ed
as non-myelinating Schwann cells. When cell lines
were derived from transgenic brains, two distinct
cell populations were identi®ed: one contained
astrocyte-like cells, while the other cellular popula-
tion had an epithelial phenotype. With passaging
and starting at about passage 8 ± 10, the latter cells
appeared to become the predominant type in
culture, did not consistently express GFAP
(although some of them could be induced to express
this marker by growth arrest), and did not express
intermediate ®laments in vitro, as detected by
immuno¯uorescence and electron microscopy. It
is therefore questionable whether such tumors, and
the cell lines derived from them, can be described as
astrocytomas. High expression of the transgene was
detected in the choroid plexus, and led to hyper-
plasia (a typical phenotype of T-antigen transgenic
mice) (Messing et al, 1985). The latter, rather than
hyperproliferation of astrocytes, was probably
responsible for death by occlusive hydrocephalus.
GFAP expression is not normally detected in
choroid plexus of human or mouse brain, although
it can occur ectopically in choroid plexus papillo-
mas (Aguzzi et al, 1997).

In summary, the mice discussed above (Danks et
al, 1995) provide an interesting model for neoplas-
tic transformation of astrocytic precursors. How-
ever, the life span of the mice is severely limited and
this has impeded the establishment of transgenic
families. This problem may be related to the
oncogene employed (SV40 large T antigen) which
seems to induce transformation of cells at an
extremely early stage. In addition, the chosen GFAP
regulatory fragment (proximal 2.3 kb ¯anking se-
quence at the 5' of the gene) may provide a pattern of
expression not completely superimposable to that
of the endogenous GFAP gene.

In an effort to overcome the problems discussed
above, we inserted the v-src oncogene inside the
®rst exon of a GFAP minigene which maintains a
large portion of upstream regulatory sequences and
the intact structure of the gene with 9 exons, 8
introns and the 3'-untranslated region (Mucke et al,
1991). This structure allows for a very precise
transgenic recapitulation of the endogenous GFAP
expression pattern. Src has been linked to glioma/
astrocytoma carcinogenesis by several lines of
evidence, since gliomas were induced by intracer-
ebral injection of RSV in dogs, and previous
studies (Aguzzi et al, 1991) showed that src
induces neuroectodermal tumors in rats. Src seems
to transform astrocytes with a longer latency period
than T-antigen, inducing astrocytoma, anaplastic
astrocytoma and ®nally to glioblastoma multi-
forme.

Two lines expressing an intact src transgene
were obtained. We detected transgene expression
in lung, heart, thymus, spleen, ovary and kidneys
in addition to the brain (as is the case for the
endogenous GFAP gene). On the other hand,
Northern blotting analysis revealed src expression
only in the brain and in testes, as previously
described (Holash et al, 1993). Pathological
astrogliosis was detected at 2.5 ± 3 weeks of age.
Further steps of carcinogenesis such as dysplasia,
pre-neoplasia and neoplasia appeared in the
following weeks. Animals with large brain tumors
occasionally died very suddenly, perhaps due to
sudden transtentorial herniation. The majority of
the tumors arose in the brain stem and thalamus,
where the highest expression of GFAP and
transgene, as well as the ®rst signs of dysplasia,
were detected. Some tumors with the morphology
of schwannomas arose in the PNS (Weissenberger
et al, 1997).

Large malignant tumors displayed areas of
necrosis associated with perifocal overexpression
of vascular endothelial growth factor (VEGF), a
potent inducer of angiogenesis expressed in human
glioblastomas (Plate et al, 1993). The gene encoding
the cognate VEGF receptor ¯k-1 was also highly
expressed in the endothelial comportment around
necrotic lesions.

Even after 1 year, the total frequency of overt
tumors did not exceed 15 ± 20%. While this low
incidence is a drawback for therapeutical studies, it
provides a realistic model of human astrocytoma
progression. The src transgene apparently provides
only an initiating step of carcinogenesis and
additional genetic lesions contribute to neurocarci-
nogenesis. In an effort to identify such candidate
lesions, we are currently intercrossing heterozygous
transgenic src mice with Rb+/7 (Saenz Robles et al,
1994) and with p53+/7 mice ** (Jacks et al, 1994a,b),
since both genes have been implicated in human
astrocytoma progression.

p53 de®cient mice have been recently exploited
to simulate a multistep model for human gliomas
(Donehower, 1996, 1977; Harvey et al, 1995).
Astocyte cultures from p53+/7 and p537/7 trans-
genes were compared to cultures obtained from
wild-type p53+/+ mice (Yahanda et al, 1995). Since
early passages, p537/7 astrocytes displayed very
rapid growth. At late passages these cells obtained
extremely high saturation densities and gave rise to
large, vascularized tumors in nude mice. A similar
pattern was observed with cells derived from p53+/7

animals once they had lost the intact germ line
allele. In sharp contrast, cells from p534+/+ animals
never underwent such changes, rapidly senesced,
and died after 7 ± 10 pasages. The changes in the
heterozygous mutants were associated with dra-
matic karyotypic and ploidy alterations, suggesting
that p53 is capable to prevent gross genetic
aberrations (Yahanda et al, 1995).
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Olfactory neuroblastomas

Early olfactory neuroblastoma (ONB, also called
esthesioneuroblastoma) models have been covered
in our previous review article (Aguzzi et al, 1995).
Servenius and colleagues (Servenius et al, 1994)
used the olfactory marker protein (OMP) promoter
to drive SV40 large T antigen expression: however,
transgenic mice developed peripheral tumors re-
sembling neuroblastomas. This ®nding was surpris-
ing since OMP was not known to be expressed in
anatomic sites other than olfactory neurons. On the
other hand (Carney et al, 1995) showed that OMP is
not expressed in human ONB, while a marker of
immature olfactory neurons, the Achaete-scute 1
gene HASH-1, is consistently present in human
primary and metastatic ONB.

Transgenic mice expressing the early region of
Adenovirus E1 from the renin or the angiotensino-
gen gene promoter developed ONB-like tumors, but
also neuroectodermal tumors in the retroperitoneal
and pelvic regions (Sugiyama et al, 1995). One
further transgenic line developed carcinoid tumors,
suggesting that the phenotype of carcinogenesis was
highly dependent upon the integration site of the
transgene within the host genome (Sagara et al,
1995).

Primitive neuroectodermal tumors (PNET)

Transgenic mice in which the SV40 T-antigen is
driven by the tyrosine hydroxylase promoter (rTH-
Tag mice) developed primitive neuroectodermal
tumors (PNETs) essentially undistinguishable from
their human counterpart (Fung et al, 1994). The
actual mechanism of tumorigenesis is associated
with a defect in developmental apoptosis, which
prevents the regression of a group of neuroepithelial
progenitor stem cells located ventrally to the
median eminence (Fung et al, 1995). In normal
age-matched controls these progenitor cells sponta-
neously regress two weeks postnatally, while rTH-
Tag transgenics presented microscopic lesions
consisting of packed small blue cells, and later
actual PNET. Apoptosis was present but obviously
not suf®cient to balance the excessive proliferative
stimulus. A similar phenomenon occurs in mice
expressing SV40 large T antigen from the insulin
promoter, which develop islet cell tumors only if
insulin like growth factor II (IGF-II) is produced and
counteracts spontaneous apoptosis. Tumor growth
is strongly reduced in IGF-II7/7 mice (Christofori et
al, 1995): it may therefore be interesting to
determine the effect of IGF-II ablation in rTH-Tag
mice.

JCV is the etiologic agent of progressive multi-
focal leukoencephalopathy (Jochum et al, 1997) and
its early region induces demyelination in transgenic
mice (Small et al, 1985, 1986a,b. However, these

early studies also documented abdominal PNET-
like tumors in the founder mice. More recently,
heritable PNETs were induced in mice expressing a
similar construct (Franks et al, 1996). JCV T antigen
probably causes carcinogenesis by binding endo-
genous p53 and Rb, as it has been shown in other
systems. Finally, the dbl oncogene driven by the
neuron speci®c enolase (NSE) promoter did not
induce neuroectodermal tumors in wild type mice
but did so in p53+/7 mice (Colucci et al, 1995).

Ablation of `caretaker' and `gatekeeper' genes

We have discussed the complex tumor phenotype
of p537/7 mice in our earlier review article (Aguzzi
et al, 1995). Many cellular factors, besides p53,
have been recognized to feed into the pathways of
cell cycle, transformation, apoptosis, and senes-
cence. The terms gatekeepers and caretakers for
such regulatory proteins was introduced as a
conceptualization of these interactions (Kinzler
and Vogelstein, 1997). Gatekeepers are master
regulators which interact directly with the different
phases of the cell cycle, while caretakers affect the
cellular machinery which senses cellular `well-
being'. While carcinogenesis seems to be strongly
enhanced by loss-of-function of single gatekeeper
genes (with an increase of frequency of up to 1000
times), carcinogenesis due to gatekeeper loss of
function seems to progress more slowly. p53 is a
well-recognized `gatekeeper' capable of inducing
apoptosis if DNA damage occurs. But p53 might be
more than a mere `guardian of genome' (Norimura
et al, 1996), and may control several differentiation
pathways (Ferreira and Kosik, 1996).

Another gatekeeper prototype, the retinoblasto-
ma tumor suppressor gene Rb, plays a crucial role
during embryogenesis: its ablation leads to embryo-
nic death, while restortion of expression in Rb-
de®cient embryos allows to prolong the embryonic
life up till birth - despite major defects in nervous
system, liver and skeletal muscle (Jiang et al, 1997;
Zacksenhaus et al, 1996).

Transgenic mice have allowed to study the
interaction between Rb, p53, and other gatekeeper.
For example, mice expressing a truncated SV40
large T antigen which maintains the capability of
interacting with pRb and with p107, but has lost the
capacity of binding p53, do not display the
lymphoid abnormalities typically detected in trans-
genic mice expressing SV40 large T antigen
(McCarthy et al, 1994), yet develop choroid plexus
tumors. However, the tumors develop much more
slowly than in transgenic mice expressing full
length SV40 large T antigen, with maximum
incidence at approximately 8 months instead of
the typical 1 ± 2 months (Bowman et al, 1996). This
indicates that the p53 binding region of SV40 large
T antigen contributes to tumorigenesis. Attenuation
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of carcinogenesis in the deleted SV40 transgenes
probably involves p53-induced apoptosis, which
seems to be mediated by the apoptogenic protein
Bax. In animals hemizygous for Bax, apoptosis
dropped by 50% and tumor growth was accelerated
(Yin et al, 1997). However, if dominant negative
mutants of p53 are expressed in these mice, very
aggressive tumors develop, indicating that p53 is
capable of inhibiting tumor growth, and of exerting
a crucial gatekeeping function. Further, p53 is
induced in the CNS of Rb knockout mice and may
stimulate apoptosis. Loss of p53 prevents cell death
in Rb knockout mice, but does not suf®ce to restore
normal proliferation (Macleod et al, 1996).

The majority of the mouse models in which
caretakers have been disrupted or modi®ed have
targeted sites other than the nervous system.
Disruption of the gene responsible for ataxia
teleangiectasia (ATM) reproduced several of the
ATM-associated de®cits, such as neurologic dys-
function due to degeneration of cerebellar and other
neurons, retarded growth, T-cell de®cits and ex-
treme sensitivity to g-radiation (Barlow et al, 1996).
We can therefore expect that ATM-de®cient mice
will become an important model for oncology.

Other transgenic models have focused on genes
involved in apoptosis. Bcl-2 was initially discov-
ered in B-cell lymphoma, and was soon recognized
to be an ubiquitous cellular regulator capable of
blocking programmed cell death. Bcl-2 is the
prototype of a growing family of proteins involved
as positive and negative regulators in the control of
cell survival and death (Merry and Korsmeyer,
1997). Bcl-2 is highly expressed during develop-
ment, but its expression ceases in adult life.
However, Bcl-2 may have a physiological role in
the maintenance and repair of nervous circuitry
(Chen et al, 1997). On the other hand, expression of
Bcl-2, as well as its associated proteins Bcl-X, Mcl-1
and Bax, is often dysregulated in brain tumors
(Krajewski 1994, 1995, 1997; Weller et al, 1995).

The BRCA1 and BRCA2 genes were identi®ed as
susceptibility genes for breast and ovarian cancer
(Brugarolas and Jacks, 1997). Several domains of
these proteins have been tentatively associated with
various functions, but their mode of action is still
quite unclear. Mice de®cient for BRCA die in utero
at approximately E5 ± 6 in the case of BRCA1 and at
approximately E7.5 ± 8.5 in the case of BRCA2,
probably because of insuf®cient cellular prolifera-
tion. These mice show abnormalities of the neural
tube, such as exencephaly and spina bi®da, and
disorganized development of neuroendocrine cells
(Gowen et al, 1996; Hakem et al, 1996, 1997; Liu et
al, 1996; Ludwig et al, 1997; Sharan et al, 1997;
Suzuki et al., 1997).

Both BRCA-1 and BRCA-2 bind to Rad51, which
is the eukaryotic homologue of RecA, one of the
most important portein in E. Coli recombination,
and co-localize in nuclear structures during mitosis

and in meiotic cells. Both BRCA-2 and Rad51
de®cient mice show dramatic hypersensitivity to
g-radiation. Therefore, both BRCA1 and 2 may
involved in repair of serious DNA damage, such as
double strand breakage. Therefore, these caretaker
molecules may exert an important function in DNA
repair, and are prime candidate caretakers in
tumorigenesis. The paradoxical effects witnessed
in BRCA-de®cient mutants are probably due to
essential functions associated with rapid cellular
proliferation during embryogenesis.

Neuro®bromatosis

The Nf-1 gene, whose product is called neuro®-
bromin, was cloned in 1990 as the susceptibility
gene for neuro®bromatosis 1 (Viskochil et al, 1990;
Wallace et al, 1990) and subsequently discovered to
encode a member of the GTPase activating proteins
(GAP) (Xu et al, 1990). GAPs are capable of
terminating ras-mediated signal transduction by
triggering the hydrolysis of ras-bound GTP. Nf-1
de®cient mice die at midgestation with gross
malformations in neural crest-derived structures
(Jacks et al, 1994b). Embryonic death is due to
major cardiac defects: these abnormalities are likely
to be due to impaired migration of neural crest
cells, which normally populate the out¯ow tracts of
the heart. Interestingly, in a variant form of Nf-1,
referred to as Watson's syndrome or Noonan-
®bromatosis syndrome, patients suffer from severe
cardiac defects involving pulmonary valvular ste-
nosis (Leao and da Silva, 1995).

Hemizygous Nf-1+/7 mice show a high incidence
of tumorigenesis. Most tumors fall into the classical
spectrum of Nf-1: neuro®brosarcomas, adrenal
tumors, and particularly pheochromocytomas,
which are exceedingly rare in mice. Myeloid
leukemias were also observed: this is consistent
with the typical occurrence of myeloid leukemias
(particularly juvenile CML) in human Nf1. The great
majority of tumors show very frequently loss of the
non-targeted allele. In addition, adoptive transfer of
fetal liver from homozygous Nf-17/7 embryos
induces an aggressive form of myeloid leukemia in
the recipients, which appears to be due to
hypersensitivity to granulocyte/macrophage colony
stimulating factor (GM-CSF) (Largaespada et al,
1996). The latter is apparently due to the activation
of RAS signal transduction pathway (STP) (Bollag et
al, 1996), suggesting that neuro®bromin may be a
negative regulator of GM-CSF through RAS-STP.

Nf-1 knockout mice have also been used to study
the role of neuro®bromin in the hyperproliferation of
Schwann cells characteristic of Nf-1 lesions (Kim et
al, 1995). The changes induced in Schwann cells
resemble the effects of v-ras. Ras-GAP de®cient mice
show a phenotype similar to that of Nf-17/7 mutants:
endothelial cells seem to be particularly affected and
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incapable of organizing a vascular network. Further-
more, double mutants mice show an exacerbated
phenotype, as would be expected of genes acting in
parallel pathways of signal transduction (Henke-
meyer et al, 1995). In Gap/Nf-1 double mutants the
neural tube hyperproliferates and invades the head
mesenchyme (Henkemeyer et al, 1995).

The tax gene of HTLV is also capable of inducing
multiple neuro®bromas in transgenic animals re-
sembling those of human Nf-1 (Hinrichs et al, 1987).
Further studies have showed that the tax gene is
indeed a negative trans-regulator of the neuro®bro-
min gene (Feigenbaum et al, 1996). This mechanism
may modify Nf-1 gene expression and contribute to
tumorigenesis.

A wealth of information about the signal trans-
duction pathways to which Nf-1 participates is
coming from studies with transgenic ¯ies. In Nf-1-
de®cient ¯ies, the most obvious phenotype was a
reduction in the sizes of larvae, pupae and adults
(Guo et al, 1997; The et al, 1997). Heterozygous loss
of the Gap1 gene did not exacerbate the phenotype,
but homozygous loss of both Nf-1 and Gap1 resulted
in lethality during larval development. However,
manipulation of other effectors of the same path-
way, such as Ras1 or SOS or Rafgof did not
dramatically change the phenotype, thus suggesting
that Nf-1 acts through a pathway slightly different
from Ras and which may involve kinase A (Guo et
al, 1997; The et al, 1997).

Neuroectodermal tumors and hedgehog
signalling

The patched and sonic hedgehog (shh) proteins
participate to a signal transduction pathway that
includes gli, the family of wnt genes, that of
transforming growth factors b (TGF-b), DPC4, APC,
b-catenin, GSK3B, the nuclear regulators p15 and p16,
the cyclin-dependent kinase inhibitors p21 and p27,
E2F as well p53 and RB. Hedgehog belongs to a family
of regulatory genes which were initially dissected by
in Drosophila Melanogaster. An increasing number of
such genes has been identi®ed from vertebrate species
such as mouse and man. The mouse sonic hedgehog
(shh) gene product can function as a morphogen in the
patterning of the developing limb. Further, it can
induce somitic cells to acquire a sclerotomal fate, and
it induces patterning of the ventral neural tube. Floor
plate induction occurs through surface-bound SHH
molecules in direct physical contact with the neural
plate, whereas the other two functions require a long-
range patterning signal. Accordingly, mice de®cient
for shh die at birth with malformations of the frontal
brain (Chiang et al, 1996) similar to the human
condition known as holoprosencephaly (HPE). The
latter occurs in 1/16000 of live birth and in 1/250
aborted fetuses, and was mapped to at least four loci
(21q22.3, 2p21, 7q36 and 18p11.3). Recently, one of

these loci was mapped to the shh locus (Belloni et al,
1996). The alterations detected in this gene consist of
chromosomal translocations affecting its regulatory
elements, or of nonsense and missense mutations
(Belloni et al, 1996; Roessler et al, 1996).

Patched (ptc), a 12-transmembrane protein re-
ceptor, is the receptor for HH (Marigo et al, 1996;
Stone et al, 1996). Another receptor called smooth-
ened or smo participates to the signal transduction
pathway. Ptc gene expression is normally inhibited
and becomes activated only in the presence of HH
induction. PTC represses this signal by binding and
inactivating SMO. In the presence of HH, PTC
releases SMO, which induces target genes including
wg (wingless) and dpp (decapentaplegic). The latter
gene, dpp, shares homology with the TGF-b gene
family, and interacts with TGF-b receptors. Signal
transduction of the ptc/dpp pathway involves a
gene which had been identi®ed as a maternal effect
enhancer of Drosophila dpp embryonic patterning
mutants: this gene was therefore called `mothers
against dpp' or mad. There seems to be a very high
speci®city in the interaction of the TGF family
receptors with their ligand and in the interaction of
MAD related proteins with their receptor.

Expression of mutant genes belonging to the three
hedgehog pathways (wnt, hedgehog, and dpp) has
helped characterizing the effects of p53 de®ciency
on mammary carcinogenesis induced by wnt family
members (Donehower et al, 1995; Frank et al, 1997;
Gunther et al, 1994; Lagna et al, 1996; Lee et al,
1995). Ectopic expression of Wnt-1 could be
induced by the Hoxb-4 region A enhancer (Dick-
inson et al, 1994), and caused a great increase in
mitotic rate and expansion of the cells of the
ventricular region. Interestingly, wnt-1 acted solely
as a mitogenic stimulus in the CNS, rather than a
patterning signal in this model, since developmen-
tal abnormalities were not evident.

A further gene belonging to the dpp/tgf-b path-
way was isolated by positional cloning upon the
observation that extensive deletions of chromosome
18 are present in human pancreatic carcinomas.
This led to the ®nal identi®cation of DPC4, which is
now believed to be involved in more than 50% of
pancreatic carcinomas. DPC4 is highly homologous
to mad, and displays frequent mutations in its
carboxy terminus which may induce transcriptional
activtion (Chu, 1997; Frank et al, 1997; Lagna et al,
1996; Moskaluk and Kern, 1996).

Transgenic mouse models have provided con-
siderable insights into the hedgehog pathways. The
group of M Scott, who initially discovered muta-
tions of the patched gene in nevoid basal cell
carcinoma syndrome, linked the shh gene to a
keratin promoter in order to obtain overexpression
in the skin (Johnson et al, 1996; Oro et al, 1997).
Transgenic mice showed alterations similar to those
seen in BCNS (such as polydactily and spina bi®da
(McMahon and Chuang, 1996)) as well as alterations
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involving skin structure and epidermal cell pro-
liferation (Fan et al, 1997; Oro et al, 1997). These
®ndings prompted a search for shh mutations in
human cancers, but only somatic mutations were
detected in approximately 10% and 30% of the total
and desmoplastic cases, respectively (Pietsch et al,
1997; Raffel et al, 1997; Vorechovsky et al, 1997; Xie
et al, 1997).

A further model is based upon alteration of
patched, whose mutations are linked to BCNS in
humans. The neurooncological relevance of this
gene derives from the occurrence of aggressive
medullobalstomas in a small percentage of BCNS
patients. Mice with a homozygous ablation of ptc
died early in utero E9.0 ± E10.5) with several
congenital abnormalities, con®rming the essential
role of ptc as an inducer of dorsalization (Goodrich,
1997). Most interestingly, a high incidence of
medulloblastomas was documented in the cerebel-
lum of hemizygous mice. Predictably, gli was highly
expressed in these tumors. The incidence of
medulloblastoma increased with age (8.3% at 5
weeks and 9 ± 10 weeks, up to 30% in animals at
12 ± 25 weeks), similarly to what is observed in
other models. This suggests that additional changes,
such as loss of the second allele of ptc and possibly
secondary genetic lesions, are required for forma-
tion of medulloblastomas.

Choroid plexus tumors

It has been long known that transgenic expression
of the SV40 viral enhancer and large-T antigen
ef®ciently induces tumors of the choroid plexus
(Palmiter et al, 1985). More recently, mutant of the
IgH intronic enhancer ENHiH coupled to the SV40
large-T antigen was shown to induce choroid
plexus tumors (Enjoji et al, 1995). This enhancer
contains motifs which direct expression to B-cells,
whose removal (Enjoji, 1994) renders the construct
permissible for expression in brain cells. In a cell
line established from such choroid plexus tumors
(which expresses typical markers such as
stransthyretin and alpha2-macroglobulin), an ets-
like transcriptional regulator was shown to bind to
the transgenic enhancer and to be probably im-
portant for directing expression to the choroid
plexus (Enjoji, 1994). The choroid plexus tumor
model proved extremely useful also for studying the
interactions of SV40 large T antigen with p53, RB,
and apoptogenic proteins such as bax, as discussed
in detail in a former section of this review [Saenz
Robles, 1994#1331; (Yin et al, 1997).

Multiple endocrine neoplasia

The hallmark of multiple endocrine neoplasia type
2 (MEN 2) syndrome is the development of

medullary thyroid carcinomas (MTC), which are
responsible for the high lethality of this syndrome
(DeLellis et al, 1986). MEN 2 is one of the very few
hereditary cancer syndromes with a dominant
pattern of inheritance. The gene responsible is the
RET transmembrane receptor (Myers et al, 1995),
and mutations responsible for MEN 2 appear to
activate the RET kinase (Eng et al, 1994, 1995;
Mulligan et al, 1994a,b). A different type of
mutation is responsible for a certain percentage of
familial Hirschsprung's disease: these are inactivat-
ing, loss-of-function mutations (Pasini et al, 1995).
Accordingly, in RET de®cient mice there is not
development of enteric nervous system, kidney
agenesis, and lack of intestinal autonomic ganglia
(Schuchardt et al, 1994, 1995). Several studies have
shown that RET is the receptor for the glial cell
derived neurotropic factor (GDNF) (Durbec et al,
1996; Treanor et al, 1996; Trupp et al, 1996). Three
additional animal studies con®rmed these results by
showing tht mice lacking the GDNF gene display
both kidney agenesis and abnormalities of the
enteric nervous system (Moore et al, 1996; Pichel
et al, 1996; Sanchez et al, 1996).

While MEN2B seems to be due to a unique
mutation in the active site of the tyrosine kinase
domain (Carlson et al, 1994; Donis Keller, 1995;
Pandit et al, 1996), in MEN2A mutations affect one
of ®ve cysteine residues clustered in the extra-
cellular domain of the receptor (Chi et al, 1994;
Donis Keller et al, 1993; Mulligan et al, 1994a,b).
When a ret construct with a typical MEN2A
mutation was linked to the calcitonin gene related
peptide promoter in order to target its expresion to
thyroid C cells, hyperplasia of thyroid C cells
occurred and was followed by multifocal and
bilateral medullary thyroid carcinomas in three
independent transgenic lines of mice (Michiels et
al, 1997). These intriguing results con®rm the role
of RET as a dominant oncogene responsible for
thyroid tumorigenesis.

Pituitary tumors

Due to its interest for molecular endocrinology,
mammalian reproduction, and development, carcin-
ogenesis in the pituitary gland has been addressed
by a wealth of transgenic models over the past few
years. In several instances, tumor growth or
carcinogenesis were dependent on the hormonal
status. A transgene encoding the polyoma early
region promoter linked to a cDNA encoding
polyome large T antigen induced pituitary tumors
(Helseth et al, 1995) which produced adrenocorti-
cotropic hormone (ACTH). At 13 ± 16 months of age,
such animals develop pituitary macroadenomas
with elevated ACTH plasma levels. Transplantation
of such tumors into nude mice led to a considerable
increase in ACTH levels and the weight of the
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Table 1 Transgenic models of neurocarcinogenesis

Tumor type Transgene or ablated gene Phenotype

Pineoblastoma Tph ± LacZ Expression in pineal gland (Huh et al., 1994)
Tph ± T-ag SV40 Aggressive pineal tumors (Son et al., 1996)

Neuroblastoma Tyrosine hydroxylase N-myc Neuroblastomas: (Weiss et al., 1997)

Astrocytic tumors GFAP (2.3 kb) ± T-ag SV40 Choroid plexus hyperpl. +undifferentiated tumors
(Danks et al., 1995)

GFAP (whole gene) v-src Astrocytomas (Weissenberger et al., 1997)

Olfactory neuroblastoma (ONB) Omp T-ag sv40 Neuroblastomas (ectopic) (Servenius et al., 1994)
Renin/angiotensin E1 adeno-12 Olfactory neuroectodermal tumors (Sugiyama et al., 1995)

Primitive neuroectodermal
tumors (PNET)

Tyrosine hydroxylase T-ag sv40 PNET (Fung et al., 1994; Fung and Trojanowski, 1995)

JCV ± T-ag PNET (Franks et al., 1996)
Neuron speci®c enolase Ð Dbl

oncogene
PNET (only in p53+/7) (Colucci et al., 1995)

Gatekeeper genes ablation p537/7 Tumor predisposition, occasional embryo lethality
(Norimura et al., 1996)

T-ag SV40 mutant Slowly growing tumors P53 bind./bax apoptosis
(Bowman et al., 1996; McCarthy et al., 1994) [Yin, 1997#1313]

Atm7/7 Extremely sensitive to .-rays (Barlow et al., 1996)
Bcl-27/7 Axonal repair impeded (Cen et al., 1997)
P1077/7 Embryo lethality (e14.5) Affected: cns and liver

(Jiang et al., 1997; Zacksenhaus et al., 1996)

Caretaker genes ablation Brca17/7 Embryonic lethality (e5 ± 6) (Hakem et al., 1996)
Brca27/7 Embryonic lethality (e7.5 ± 8.5) Sharan, 1997#1910)

Neuro®bromatosis (Nf-1) Nf-17/7 Lethality heart+nervous system (Brannan et al., 1994)
Nf-17/+ Phaechromocytomas and myeloid leukemias (Jacks et al., 1994b)

Reconst.Nf7/7 Myeloprolif. (JCML) (Largaespada et al., 1996)
Nf-17/7 Hypersens to GM-CSF (Bollag et al., 1996)

NF-17/7Schwann Similar to v-ras (Kim et al., 1995)
Ras-gap7/7Neuro®bromin inact. Die E10.5 : cns+endoth (Henkemeyer et al., 1995)

By Htlv-tax Localized neuro®bromas: Additional mechanisms
(Feigenbaum et al., 1996; Hinrichs et al., 1987)

Size reduct.-PK-A involv.

Hedgehog Signaling Hoxb-4a enhancer-Wnt�
and p537/7

Cooperation in carcinog. between wnt and p53.
Mitogenicity of wnt

Keratin-14-Shh Basal cell nevus syndrome (Fan et al., 1997; Oro et al., 1997)
(Dickinson et al., 1994; Donohower et al., 1995;

Gunther et al., 1994; Lee et al., 1995)
Ptc7/7 Lethal e9-e10.5
Ptc+/7 Large size, syndactily, cerebellar medulloblastoma

(30% at 5 ± 6 months) (Goodrich, 1997)

Multiple Endocrine Neoplasia
(MEN)

Ret7/7 Renal agenesis/Hirschsprung's disease
(Schuchardt et al., 1994, 1995, 1996)

GDNF7/7 Comparable to ret7/7: both show same phenotype
CGRP promoter (2 kb)

Retcys634→arg
Bilateral C cell hyperplasia multifocal MTC (3 weeks ± 2 years)

(Michiels et al., 1997)

Choroid plexus tumors SV40/IgH enhancer T-ag SV40 Tumors: ets-like trascription factor activation
(Enjoji, 1994, 1995) (Saenz Robles et al., 1994;

Symonds et al., 1994; Yin et al., 1997)

Pituitary Tumors PyLT Micro and macroadenomas Cushing's syndrome
(Helseth et al., 1992, 1995; Holm et al., 1993)

LH/FSH promoters-Tag SV40 Pituitary tumors/immortal cell lines
(Alarid et al., 1996; Turgeon et al., 1996)
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animals. Therefore, this transgene model provides a
realistic model of human Cushing's disease (Helseth
et al, 1992; Holm et al, 1993).

In a very interesting model developed by the
group of P Mellon, the SV40 large T antigen was
expressed under the regulatory control of various
promoters, in order to test whether different target
cells may be immortalized in speci®c stages of
differentiation (Alarid et al, 1996). Cells from an
immature gonadotropic cell line are less differen-
tiated and express the alpha subunit as well as the
gonadotropin releasing hormone receptor, while
more differentiated cell lines were obtained by
oncogenesis with SV40 large T linked to promoters
of LH/FSH (Alarid et al, 1996). A L b T2
gonadotropic cell line, also obtained from a trans-
genic mouse containing the SV40 large T antigen
linked to the rat LH b-subunit regulatory region, was
shown to respond to steroid hormone regulation
and to pulses of gonadotropin releasing hormone
(Turgeon et al, 1996).

Ependymomas

As discussed in a previous review article (Aguzzi et
al, 1995), it has been amply demonstrated in the
past that transgenes encompassing the early region
of the SV40 virus display a tropism for ependymal
cells and choroid plexus, and SV40 large T antigen
is capable of inducing both ependymomas and
choroid plexus tumors when driven by its homo-
logous promoter. Carcinogenesis of these target cells
could be induced also by the oncogenes of the
human papillomavirus type 16, E6 and E7. There-
fore, some type of speci®city for viral sequence
expression or viral promoters seems to be present in
ependymal cells. Intriguingly, also the major im-
mediate early promoter of human cytomegalovirus

(HCMV), when introduced into transgenic mice,
(Fritschy et al, 1996), targeted expression of a
reporter gene to ependymal cells and choroid
plexus epithelia (among other, predominantly neur-
al crest-derived targets). Since HCMV can cause
severe and devastating congenital disorders in
human embryos, as well as ependymitis in im-
munocompromised adults, such studies are of
potentially great interest in understanding whether
pathology correlates with speci®c gene expression.
These data are consistent with the presence of
speci®c, probably transacting, regulatory mechan-
isms which permit expression of viral genes in
these cells.

Concluding remarks

The increasing number of transgenic animals
utilized for studies on neurocarcinogenesis is
documented by the plethora of new articles
published only two years after our initial review.
Certainly, the most recent transgenic systems aim at
increased speci®city and reproducibility of the
natural situations which they attempt to model.
The new tools for speci®c targeting of genomic loci
have now made such goals attainable.

The wealth of information now available on the
biochemical pathways of signal transduction, al-
lows for more meaningful experiments. Moreover,
transgenic studies have become a natural comple-
ment to reverse genetics, in which susceptibility
genes are being detected by linkage analysis and
positional cloning. On the basis of the discoveries of
the last few years, we predict that transgenic mice
will not only be instrumental for understanding the
function of newly discovered oncogenes and tumor
suppressor genes, but also for uncovering unex-
pected functions of genes long known.
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