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Chemokines, chemokine receptors and CNS
pathology-background

Chemokines are small proin¯ammatory cytokines
which stimulate migration of in¯ammatory cells in
vitro and in vivo. They can be divided according to
structure, function and gene localization into four
different subfamilies. Chemokines have been as-
cribed diverse additional functions, including reg-
ulation of angiogenesis, control of cell proliferation
and developmental tissue patterning.

The suspicion that chemokines could be involved
in CNS pathology emerged from considering their
target-cell speci®city, in light of the selective
recruitment of leukocyte populations to the in-
trathecal compartment in diverse disease processes.
Initial studies of chemokine expression in the CNS
were performed in models including experimental
autoimmune encephalomyelitis (EAE), stroke and
meningitis. Early results from these investigations
provided the exciting insight that parenchymal CNS
cells were among the most abundant sources of
chemokines, both in vitro and in vivo. A landmark
observation from Karpus et al (1995) was that EAE
could be abrogated by passive immunization with
antibodies to a single chemokine, MIP-1a.

Chemokine receptors have also found a place in
the unique pathologies of the nervous system.
Evident relationships between chemokines that
function in speci®c processes and response by
appropriate hematogenous receptor-bearing cells
have been demonstrated. Of more novelty (if less
well understood) has been the ®nding that chemo-
kine receptors such as CXCR4, CXCR2, CX3CR1 and

the Duffy antigen receptor for chemokines (DARC)
are expressed by resident neuroepithelial cells.
These varied observations point to a fascinating,
diverse and complex array of biological roles for
these products in the CNS. Preliminary results in
this ®eld are reviewed in this manuscript and
summarized in the Tables.

Chemokines in experimental autoimmune
encephalomyelitis (EAE)

EAE is a model of organ-speci®c autoimmunity, and
is a useful experimental system for examining
certain aspects of the human disorder multiple
sclerosis (MS). The disorder is induced in suscep-
tible animals (mice, rats, guinea pigs or nonhuman
primates) with injections of myelin antigens in
emulsion. The most common practice at present is
to immunize with either whole spinal cord homo-
genate, myelin protein preparations or peptides
derived from myelin proteins. The cardinal ence-
phalitogenic proteins of myelin are myelin basic
protein (MBP), myelin proteolipid protein (PLP) and
myelin oligodendroglial glycoprotein (MOG).

It has been shown that chemokine upregulation
occurs in EAE and correlates with disease appear-
ance (Hulkower et al, 1993; Ransohoff et al, 1993;
Godiska et al, 1995; Glabinski et al, 1996a). Godiska
and coworkers observed increased expression of
mRNA for several chemokines including RANTES,
MIP-1a, MIP-1b, TCA3, IP-10 MCP-1 KC, and MCP-3
in spinal cord before clinical signs appeared. They
reported also that encephalitogenic T cells ex-
pressed transcripts for RANTES, MIP-1a, MIP-1b
and TCA3 (Godiska et al, 1995). We observed very
transient expression of MCP-1 and IP10 at the
beginning of acute EAE (Ransohoff et al, 1993).
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Analysis of chemokine gene expression and histo-
logical ®ndings suggested that chemokines amplify
but not initiate invasion of CNS by in¯ammatory
cells from the blood (Glabinski et al, 1996a). In situ
hybridization showed that several chemokines are
expressed by astrocytes in near vicinity of in¯am-
matory cuffs (Ransohoff et al, 1993; Glabinski et al,
1996a; Tani et al, 1996b).

In chronic-relapsing EAE we observed increased
expression at the mRNA and protein level of ®ve
chemokines (MCP-1, IP-10, MIP-1alpha, GRO-
alpha, RANTES) during spontaneous relapse of
the disease (Glabinski et al, 1997). Three of them
were expressed by astrocytes (MCP-1, IP-10 and
GRO-alpha), two others (MIP-1 alpha and
RANTES) by in¯ammatory cells (Glabinski et al,
1997).

As noted above, Karpus and colleagues provided
support for the functional importance of chemokine
expression in EAE by passive immunization stu-
dies. Anti-MIP-1a blocked initial attacks of EAE
after adoptive transfer of activated antigen-speci®c
T-cells blasts (Karpus et al, 1995). Interestingly,
anti-MCP-1 antibodies, which were inert towards
initial attacks, signi®cantly reduced relapses of
disease, which were unaffected by anti-MIP-1a
(Karpus et al, 1997). These results indicated
complex and nonredundant functions of individual
b-chemokines in EAE (Karpus et al, 1998).

Chemokines in nonimmunologic CNS injury

Shortly after mechanical trauma to the CNS
in¯ammatory cells migrate from the blood to the
injury site and begin the process of tissue repair.
The cellular signals for that migration are not
known. The functions of chemokines suggest that
they are attractive candidates for that role. We
analzyed four models of CNS trauma: nitrocellulose
membrane stab or implant injury to the adult or
neonatal cortex. In the models of mechanical injury
to the adult brain we observed increased expression
of the mRNA for MCP-1 3 h after injury (Glabinski
et al, 1996b). MCP-1 protein was detected at 12 h
postinjury. In the neonatal stab injury model
characterized by lack of in¯ammation MCP-1
expression was signi®cantly lower than in other
models. Other analyzed chemokines (IP-10, MIP-1a,
GRO-a) were not detected at the mRNA or protein
level. In situ hybridization experiments combined
with immunocytochemistry showed that astrocytes
in the vicinity of the injury site were the cellular
source of MCP-1 (Glabinski et al, 1996b). Similar
kinetics of MCP-1 expression was described in rat
models of mechanical injury (Berman et al, 1996). It
has been shown also in rat stab wound brain injury
that reactive astroyctes may express MIP-1b follow-
ing trauma (Ghirnikar et al, 1996). After cryogenic
lesion to the cerebral cortex MCP-1 mRNA expres-

sion peaked at 6 h, remained elevated for 24 h and
then declined by 48 h. IP-10 expression was not
upregulated in that brain injury model (Grzybicki et
al, 1998). Compatible results were reported by
Hausmann and colleagues, who found selective
upregulation of MCP-1 expression after sterile but
not LPS-augmented cerebral trauma (Hausmann et
al, 1998).

There are several reports showing increased
expression of some chemokines in experimental
models of brain ischemia. This may suggest that
locally produced chemokines may stimulate in-
¯ammatory cell migration to the ischemic area and
contribute to brain injury in ischemic stroke. Kim
and coworkers observed increased expression of
mRNA for two chemokines (MCP-1 and MIP-1a) 6 h
after induction of cerebral ischemia, with peak
expression at 24 ± 48 h (Kim et al, 1995). Immunos-
taining suggested that MCP-1 positive cells were
endothelial cells and macrophages in the ischemic
area. The morphology of MIP-1a positive cells was
similar to GFAP-positive astrocytes (Kim et al,
1995). Contradictory results were published by
others who showed by double in situ hybridization
that MIP-1a is produced by Mac-1 positive micro-
glial cells with peak of expression 4 ± 6 h after onset
of occlusion (Takami et al, 1997). Increased MCP-1
mRNA expression at 6 h after occlusion of middle
cerebral artery (MCAO) has also been reported. The
kinetics of MCP-1 expression was similar after
permanent MCAO or MCAO reperfusion (Wang et
al, 1995).

Astrocytes were the cellular source of MCP-1
from 6 h to 2 days after MCAO, as reported by
Gourmala et al (1997). At later time points MCP-1
was detected in macrophages and reactive microglia
in the ischemic area (Gourmala et al, 1997).
Increased MCP-1 expression has been observed as
early as 1 h after reperfusion in the rat forebrain
reperfusion model (Yoshimoto et al, 1997). Chemo-
kine CINC (cytokine-induced neutrophil chemoat-
tractant) which belongs to IL-8 family and is a
potent neutrophil chemoattractant in rats, was
overexpressed in the cerebral cortex of rats 6 ±
12 h after MCAO (Liu et al, 1993). Another group
observed increased CINC expression in the brain
and serum 3 ± 12 h after reperfusion. One hour of
ischemia without reperfusion did not produce
increase in CINC expression in the brain (Yamasaki
et al, 1995).

Expression of chemokines in the CNS of
transgenic mice

Most of the early information about chemokines
and their physiological roles came from in vitro
studies. Those results could not be directly extra-
polated to the in vivo situation. This problem has
been addressed by the demonstration that pro-
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grammed expression of chemokine genes in the
CNS can trigger the recruitment of leukocytes in
vivo (Lira et al, 1997). MCP-1 transgene expressed
in oligodendrocytes under control of MBP promoter
was able to induce accumulation of in¯ammatory
cells within the CNS (Fuentes et al, 1995).
Immunohistochemical staining showed that in®l-
trating cells were monocytes/macrophages and they
were localized mainly in perivascular areas with
minimal parenchymal in®ltration. MCP-1 immunor-
eactivity was detected at the abluminal surface of
cerebral microvessels. The mononuclear cell accu-
mulation was massively ampli®ed at that model by
intraparenchymal injection of lipopolysaccharide
(LPS). Despite monocyte accumulation no neurolo-
gical or behavioral signs were observed (Fuentes et
al, 1995).

CNS-speci®c expression of a-chemokine KC,
which is a potent neutrophil chemoattractant in
vitro produced impressive neutrophil in®ltration
into perivascular, meningeal and parenchymal CNS
sites (Tani et al, 1996a). KC expression was detected
in oligodendrocytes and colocalized with in®ltrat-
ing neutrophils. Three weeks old mice were healthy
and behaviorally normal despite remarkable neu-
trophil accumulation. Beginning at 40 days of age
MBP-KC mice developed a neurological syndrome
of pronounced postural instability and rigidity. The
major neuropathological ®ndings at that time were
microglial activation and blood-brain barrier dis-
ruption (Tani et al, 1996a). Results obtained from
these experiments suggested that chemokines are
potent inducers of in¯ammatory cell migration into
the CNS in vivo. Moreover, their activities were
target cell-speci®c in vivo and restricted mainly to
triggering migration but not activation (Ransohoff et
al, 1996).

Chemokines in human CNS pathology

Migration of in¯ammatory cells from the blood to
the CNS compartment is the principal pathological
feature of bacterial meningitis. Most information
about chemokine involvement in human CNS
pathology comes from studies analyzing chemokine
levels in the CSF of patients with meningitis.
Spanaus and collaborators analyzed by ELISA
concentrations of several chemokines in the CSF
of patients with pyogenic meningitis (Spanaus et al,
1997). They found signi®cantly increased levels of
IL-8, GRO-a, MIP-1a, and MIP-1b but not RANTES,
when compared with nonin¯ammatory CSF con-
trols. The CSF from meningitis patients was
chemotactic in vitro for neutrophils and mono-
nuclear leukocytes and the migration was dimin-
ished by speci®c anti-chemokine antibodies
(Spanaus et al, 1997). In another study elevated
levels of IL-8, GRO-a and MCP-1 were found in the
CSF from patients with bacterial and aseptic

meningitis but not in parallel blood serum speci-
mens (Sprenger et al, 1996). Number of granulo-
cytes in the CSF from bacterial meningitis patients
correlated with IL-8 and GRO-a levels, whereas
MCP-1 level correlated well with mononuclear cell
count in aseptic meningitis (Sprenger et al, 1996).
In another study IL-8 concentration in the CSF was
higher than 2.5 ng/ml in all samples from patients
with pyogenic meningitis, but also in some samples
from patients with nonbacterial meningitis (Lopez-
Cortes et al, 1995). In patients with nonpyogenic
meningitis a signi®cant correlation between IL-8
levels and CSF granulocyte counts was found
(Lopez-Cortes et al, 1995). These results suggest
that chemokines are involved in in¯ammatory cell
accumulation in the subarachnoid space.

MIP-1a in the CSF was reported to be increased in
multiple sclerosis patients during relapse as well as
in CSF from patients with Behcet's disease and
HTLV-1 associated myelopathy. MIP-1a level in that
study correlated with leukocyte and protein con-
centration in the CSF (Miyagishi et al, 1995).
Increased level of IL-8 was also detected in CSF of
patients with severe brain trauma, at higher levels
in CSF than in corresponding serum and correlated
directly with blood-brain barrier dysfunction (Koss-
mann et al, 1997).

There is little information about cellular sources
of chemokine production during human CNS
pathology. MCP-1 immunoreactivity was detected
in reactive microglia and mature but not in
immature senile plaques in autopsy specimens from
®ve Alzheimer disease patients (Ishizuka et al,
1997). Simpson and coworkers demonstrated ex-
pression of MCP-1 protein by astrocytes bordering
active MS lesions, compatible with prior observa-
tions in EAE, trauma and cerebral ischemia models
(Simpson et al, 1998). Hvas et al showed that
RANTES mRNA was expressed by perivascular
in¯ammatory cells in MS brain sections as pre-
viously reported in EAE (Hvas et al, 1997).

Chemokine expression by CNS cells in vitro

MCP-1 was originally puri®ed in 1989 from the
culture supernatant of a glioma cell line (Yoshimura
et al, 1989). Since that time numerous studies on
chemokine expression by CNS cells in vitro have
been published. Many human glioma cell lines
were shown to produce IL-8 and MCP-1, while none
of neuroblastoma cell lines expressed these cyto-
kines (Morita et al, 1993). In other studies IL-8 was
produced by ®ve astrocytoma cell lines (Nitta et al,
1992) and also in some glioblastoma cell lines
(Kasahara et al, 1991). Cultured astroyctes stimu-
lated by cytokines TNFa and TGFb express MCP-
1 mRNA and protein (Hurwitz et al, 1995). IFNg can
also stimulate MCP-1 expression by astrocytoma
cell line (Zhou et al, 1998). Additionally, stimulated
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astrocytes can express MIP-1a and MIP-1b (Peterson
et al, 1997) and RANTES (Barnes et al, 1996). LPS,
IL-1b and TNF-a stimulate production of MCP-1 by
astrocytes but not microglia (Hayashi et al, 1995).
HIV-1 transactivator protein Tat signi®cantly in-
crease astrocyte production of MCP-1, but not
RANTES, MIP-1a and MIP-1b suggesting that HIV
may induce monocyte in®ltration in the CNS via
astrocyte stimulation (Conant et al, 1998). IP-10 and
RANTES expression can be upregulated in primary
rat astrocytes and microglia by the infection of
neurotropic paramyxovirus NDV (Fisher et al,
1995). Beta amyloid peptide is able to stimulate
expression of IL-8 by human astrocytoma cells
(Gitter et al, 1995).

Microglial cells are critical for CNS response to
varied forms of injury. When stimulated in vitro by
LPS, IL-1b and TNFa they can produce IL-8.
Pretreatment with IL-4, IL-10 or TGF-beta 1 in-
hibited the stimulatory effects of these proin¯am-
matory cytokines (Ehrlich et al, 1998). Cryptococcal
polysaccharide was also capable of inducing IL-8
production by human fetal microglial cells showing
that some fungi can stimulate endogenous CNS cells
to express chemokines (Lipovsky et al, 1998).

Human cultured microglia produce MIP-1a, MIP-
1b and MCP-1 in response to LPS, TNFa or IL-1b
(McManus et al, 1998). Moreover MCP-1 expression
by brain macrophages can be also stimulated by IL-6
and CSF-1 (Calvo et al, 1996) as well as the active
fragment of beta amyloid (Meda et al, 1996). This
last observation gives new insight into mechanisms
underlying amyloid plaque formation in the CNS
during Alzheimer disease. Microglial cells infected
by SIV in vitro can produce more IL-8 than
uninfected cultures (Sopper et al, 1996).

TNFa treatment of mixed human brain cell
cultures stimulated higher expression of RANTES
and MIP-1b than observed after similar stimulation
of microglial cells (Lokensgard et al, 1997).
Cultured brain endothelial cells were shown to
express mRNA for MCP-1. Treatment with TNFa
increased MCP-1 expression in a dose-dependent
manner (Zach et al, 1997). Bovine brain microvessel
endothelial cells showed increased expression of
IL-8 after infection with bacterial parasite C.
ruminantium (Bourdoulous et al, 1995).

Chemokine receptors ± overview

Chemokines act on target cells via seven-transmem-
brane-domain receptors that signal through GTP-
binding proteins. Two main subgroups of chemo-
kine receptors have been described: CXC chemo-
kine receptors (CXCR) with 36 ± 77% and CC
chemokine receptors (CCR) with 46 ± 89% identical
amino acids (Baggiolini et al, 1997). Lately a
receptor for CX3C chemokine-fractalkine/neurotac-
tin was identi®ed (Imai et al, 1997), so far there is

no known receptor for C chemokine lymphotactin.
The largest family of chemokine receptors are CCR
receptors consisted of ten receptor types in human
(CCR1 ± CCR10). CXCR receptor family includes
four types of receptors in humans (CXCR1 ±
CXCR5). Chemokine receptors can be categorized
into four different subgroups: shared, speci®c,
promiscuous and viral (Premack and Schall,
1996). Most of the chemokine receptors can bind
more than one chemokine ligand belonging to the
same chemokine subfamily (shared group). CXCR2
binds several CXC chemokines that contain a
canonical glutamate-leucine-arginine (ELR) motif.
CXCR3 binds non-ELR CXC chemokines including
b-R1/I-TAC (Cole et al, 1998; Rani et al, 1996), IP-10
and Mig. All CCR receptors have several ligands.
There is a promiscuous chemokine receptor desig-
nated as DARC which is identical to Duffy blood
group antigen on erythrocytes. It binds chemokines
from CC and CXC subfamilies and it is postulated
that it works in the blood as a `sink' for chemokines
because of the lack of signaling. Two (among
several other) viruses encode chemokine receptors:
Cytomegalovirus (CMV US28) and Herpes virus
saimiri (HSV ECRF3) (Murphy, 1996; Premack and
Schall, 1996). The role of virally encoded chemo-
kine receptors is unknown but preservation of
signaling function is of considerable interest
(Murphy, 1996).

Chemokine receptors in CNS pathology

Expression of several different chemokine receptors
has been detected in the normal CNS as well as in
cultured cells derived from CNS components
(Tables 1 and 2). The fractalkine receptor CX3CR1
was detected at surprisingly high levels in normal
brain and spinal cord in both human and rodent
specimens before its response to the fractalkine
ligand was described (Combadiere et al, 1995;
Harrison et al, 1994; Imai et al, 1997). Fractalkine
was also demonstrated to be highly abundant in
normal CNS tissues and upregulated in pathology,
suggesting important functions for this ligand-
receptor system in neural physilogy (Bazan et al,
1997; Pan et al, 1997). Horuk and coworkers
detected the DARC receptor on cerebellar Purkinje
cells in archival human brain sections (Horuk et al,
1996) and CXCR-2 on projection nuerons in diverse
regions of the brain and spinal cord (Horuk et al,
1997). The same group reported detection of
chemokine receptors CCR1, CCR5, CXCR2 and
CXCR4 by immunohistochemistry in cultured hu-
man neurons (Hesselgesser et al, 1997). Transcripts
for CXCR4 were identi®ed also by Northern blot
(Heesen et al, 1996a; Nagasawa et al, 1996) and
RT ± PCR (Heesen et al, 1997) in cultured primary
mouse astrocytes. Cultured astrocytes were shown
to express also CCR1 (Tanabe et al, 1997), but not
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CCR2 and CXCR2 (Heesen et al, 1996b). Other
studies con®rmed that CXCR4 is expressed by
microglia in human and mouse brain (He et al,
1996). The single unequivocal demonstration that
chemokine receptors are important for develop-
mental neural patterning comes from the ®nding
that CXCR4 knockout mice exhibit abnormal

formation of the CNS (Littman, 1998). Two alter-
natively spliced forms of mouse CXCR4 have been
identi®ed both of which are expressed by cultured
astrocytes and microglia (Heesen et al, 1997).
Several orphan chemokine receptor-like proteins
were detected in the CNS. They have structure
similar to chemokine receptors but their ligands

Table 1a Chemokines upregulated in experimental infectious CNS pathology

Upregulated chemokine CNS pathology Animal Cellular source Reference

MIP-1a, MIP-1b, RANTES,
MCP-3, IP-10

SIV-induced AID,
encephalitis

Monkey Endothelial cells,
Monocytes, Microglia

Sasseville et al, 1996

IP-10, RANTES, MCP-1,
MIP-1b, MCP-3,
Lymphotactin, C10,
MIP-2, MIP-1a

Lymphocytic,
Chorio-meningitis

Mouse Brain homogenate Asensio and Campbell, 1997

MIP-1a, MIP-2 Listeria meningo-
encephalitis

Mouse Granulocytes,
Monocytes

Seebach et al, 1995

IP-10, RANTES, MCP-1,
MCP-3, MIP-1b, MIP-2

Hepatitis virus
encephalomyelitis

Mouse Astrocytes Lane et al, 1998

Table 1b. Chemokines upregulated in experimental noninfectious CNS pathology

MCP-1, RANTES, MIP-1a,
MIP-1b, TCA-3, IP-10,
MCP-1, KC, MCP-3,

Fractalkine

EAE, ChREAE Mouse,
Rat

CNS, homogenate
astrocytes, microglia,
lymphcytes,
macrophages,
endothelial cells

Hulkower et al, 1993; Ransohoff et al,
1993; Godiska et al, 1995; Glabinski et
al, 1996; Karpus et al, 1995; Tani et al,
1996; Pan et al, 1997; Glabinski et al,
1997; Berman et al, 1996; Miyagishi et
al, 1995

MCP-1, MIP-1a, MIP-1b Mechanical injury Mouse,
Rat

Astrocytes,
macrophages,
endothelial cells,
microglia

Glabinski et al, 1996; Berman et al,
1996; Ghirnikar et al, 1996; Hausmann
et al, 1998; McTigue et al, 1998; (JNR
in press)

MCP-1 Freeze injury Mouse Homogenate Grzybicki et al, 1998
MCP-1 Chemical injury Rat Astrocytes,

macrophages
Calvo et al, 1996; Hausmann et al,
1998; McTigue et al, 1998; (JNR in
press)

MCP-1, MIP-1a, CINC Brain ischemia Rat Brain homogenate,
endothelial cells,
microglia,
macrophages,
astrocytes

Wang et al, 1995; Lu et al, 1993;
Yamasaki et al, 1995; Kim et al,
1995; Takami et al, 1997; Gourmaia
et al, 1997; Ivacko et al, 1997

Table 2 Chemokines upregulated in human CNS pathology

Upregulated chemokine CNS pathology Tissue source Reference

IL-8 Astrocytoma, glioblastoma Tumor cells Van Meir et al, 1992; Nitta et al, 1992
IL-8, Gro-a, MCP-1, MIP-1a, MIP-1b Bacterial and aseptic meningitis Sprenger et al, 1996; Spanaus et al, 1997;

Lopez-Cortes et al, 1995
MIP-1a Multiple sclerosis,

Behcet's disease,
HTLV-1, myelopathy

Miyagishi et al, 1995

IL-8 Brain injury Kossman et al, 1997
MCP-1 HIV-1 associated dementia Conant et al, 1998
MCP-1 Alzheimer disease Microglia,

senile plaques
Ishizuka et al, 1997; Hvas et al, 1997;
Simpson et al, 1998

RANTES Multiple sclerosis Perivascular
leukocytes

Hvas et al, 1997

MCP-1 Multiple sclerosis Astrocytes Simpson et al, 1998
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have not been identi®ed so far. One of them is
CXCR5 receptor isolated initially from Burkitt's
lymphoma cells but expressed also in mature B
cells and in brain neurons (Kaiser et al, 1993).

Another example of orphan chemokine-like recep-
tors in a family of LCR-1 receptors identi®ed
initially in bovine locus coeruleus, later rat and
sheep homologs were found (Wong et al, 1996).

Table 5 Chemokine receptors upregulated in CNS pathology

Upregulated receptor CNS disease Cellular source Reference

CXCR-2, CCR3 Alzheimer disease Neurons Horuk et al, 1997; Xia et al, 1997; He et al, 1996
CCR3, CCR5, CXCR53, CXCR4 SIV encephalomyelitis Perivascular in®ltrates Westmoreland et al, 1998
CCR2, CCR5, CXCR4, CX3CR1 EAE Spinal cord homogenate Jiang et al, 1998

Table 6 Chemokine receptors expressed by cultured CNS cells

Receptor CNS cells Species Reference

IL8R, CXCR-4, CCR-1, CX3CR-1 Astrocytes Human, mouse, rat Tanabe et al, 1997; Jiang et al, 1998; Heesen 1997
IL8R, CXCR-4, CCR-3, CCR-5, CX3CR-1 Microglia Human, mouse, rat He et al, 1996; Tanabe et al, 1997; Jiang et al, 1998
CXCR-2, CXCR-4, CCR-1, CCR-5 Neurons Human Hesselgesser et al, 1997

Table 4 Chemokine receptors detected in normal CNS in vivo

Receptor Localization Species Reference

CXCR-2 Projection neurons Human autopsy brain Horuk et al, 1997; Xia et al, 1997
DARC Purkinje cells Human autopsy brain Horuk et al, 1996
CCR-3 Microglia Human autopsy brain He et al, 1996
CXC3CR-1 Human brain RNA Combadiere et al, 1995; Harrison et al, 1994
CCR-3, CCR-5, CXCR4 Pyramidal neurons, glial cells Macaque Westmoreland et al, 1998
RLCR-1 Neurons, ependymal cells Rat Wong et al, 1996
CCR-5 Normal brain Rat Jiang et al, 1998
CXCR5 Granule and Purkinje cell layer Mouse Kaiser et al, 1993

Table 3 Chemokines expressed by cultured cells

Chemokine CNS cells Species Reference

MCP-1, IL-8 Glioma, astrocytoma,
glioblastoma

Human Morita et al, 1993; Van Meir et al, 1992;
Nitta et al, 1992; Kasahara et al, 1991;
Zhou et al, 1997

MCP-1, IL-8, MIP-1a, MIP-1b,
RANTES, IP-10

Activated astrocytes Human, rat murine Gitter et al, 1995; Peterson et al, 1997;
Conant et al, 1993; Barnes et al, 1996;
Sun et al, 1997; Hurwitz et al, 1995;
Fisher et al, 1995; Hayashi et al, 1995

MIP-1a, MIP-1b, MCP-1, IL-8,
RANTES, IP-10

Activated microglia, brain
macrophages

Human simian rat
murine

McManus et al, 1998; Peterson et al,
1997; Ehrlich et al, 1998; Lipovsky et al,
1998; Lokensgard et al, 1997; Sopper et
al, 1996; Sun et al, 1997; Hurwitz et al,
1995; Fisher et al, 1995; Hayashi et al,
1995; Meda et al, 1996; Calvo et al, 1996

MCP-1, IL-8 Stimulated cerebral endothelium Human, bovine,
porcine, murine

Zach et al, 1997; Lou et al, 1997;
Bourdoulous et al, 1995

RANTES Infected neurons Mouse Halford et al, 1996
RANTES, MIP-1a Mixed brain cell cultures Human Lokensgard et al, 1997
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