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Theiler's murine encephalomyelitis virus is an endemic murine pathogen that
induces a demyelinating disease of the central nervous system in susceptible
mouse strains. The disease is characterized by central nervous system
mononuclear cell in®ltration and presents as chronic, progressive paralysis.
The expression of CC and C-x-C chemokines in the central nervous system of
Theiler's murine encephalomyelitis virus-infected mice was examined
throughout the disease course by ELISA and RT ± PCR analysis. Central
nervous system expression of MCP-1 and MIP-1a protein was evident by day 11
post Theiler's murine encephalomyelitis virus infection of SJL mice and
continued throughout disease progression. MIP-1a, RANTES, MCP-1, C10, IP-
10, and MIP-1bmRNA was speci®cally expressed in the central nervous system
and not the periphery following Theiler's murine encephalomyelitis virus
infection. This was associated with development of clinical disease. These data
suggest that the expression of multiple chemokines at particular times
following viral infection is associated with demyelinating disease.
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Introduction

Theiler's murine encephalomyelitis virus (TMEV) is
an endemic murine pathogen that induces a
demyelinating disease of the central nervous system
(CNS). Theiler's murine encephalomyelitis virus-
induced demyelinating disease (TMEV-IDD) is an
excellent model for human multiple sclerosis (MS)
as both diseases show chronic progressive paralysis
and are characterized by mononuclear cell in®ltra-
tion of the CNS and subsequent axonal demyelina-
tion (Miller and Gerety, 1990). Following
intracerebral (i.c.) infection, TMEV replicates in
CNS cells including microglial and oligodendro-
cytes (Yamada et al, 1990; Ozden et al, 1991). A
peripheral viremia develops and is neutralized by
antibody responses during the ®rst 2 weeks post
infection, however, virus persists in CNS macro-
phages for the lifetime of the animal (Clatch et al,
1990; Lipton et al, 1984). Focal in¯ammation
(predominantly T lymphocytes and macrophages)
occurs only in the white matter of the spinal cord

and brain (Lipton, 1975). Virus-speci®c CD4+ T
lymphocytes are believed to mediate immuno-
pathology in the CNS (Welsh et al, 1987; Borrow
et al, 1992; Gerety et al, 1994). Macrophages
recruited and activated by Th1 cytokines phagocy-
tose myelin (bystander demyelination) (Rossi et al,
1997; Cammer et al, 1978). From 7 to 11 weeks post
disease onset, animals progress from mild clinical
symptoms to more severe paralysis with total
hindlimb paralysis occurring after 13 weeks. Miller
et al (1997) have reported that early in TMEV-IDD
(0 ± 50 days post infection) viral antigen-speci®c T
lymphocyte proliferative and delayed type hyper-
sensitivity (DTH) responses could be detected.
Approximately 50 days post infection, however,
antigen-speci®c T lymphocyte proliferative and
DTH responses to the proteolipid peptide
(PLP139-151) could be measured. This phenomen-
on, termed epitope spreading (Lehmann et al,
1993), has been described as having a functional
role in experimental autoimmune encephalomyeli-
tis (EAE) disease progression (McRae et al, 1995).

The ability of different strains of mice to develop
clinical disease is in¯uenced by several factors.
Multiple genes have been shown to be factors in
susceptibility to TMEV-IDD. Examples of such
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genes include Tmevd-1, Tmevd-2, TCR (non-MHC),
and H-2D (MHC) (Miller et al, 1998; Rodriguez et al,
1992; Clatch et al, 1987b). In addition, enhanced
viral clearance (Lindsley et al, 1991) or down-
regulation of T lymphocyte responses (Nicholson et
al, 1996) by different populations of CD8+ T
lymphocytes have been implicated in TMEV
resistance. The categories of disease susceptibility
are de®ned as follows: highly susceptible exhibits
clinical signs of disease in 90 ± 100% of mice;
intermediately susceptible exhibits clinical signs
in approximately 50% of the mice; and resistant
exhibits clinical signs in no mice by day 120 days
post infection (Clatch et al, 1987a).

Chemoattractant cytokines (chemokines), speci-
®c for mononuclear cells and neutrophils, induce
leukocyte accumulation at sites of in¯ammation
(Oppenheim et al, 1991). Chemokines are divided
into four highly conserved families designated by
the position of the ®rst two cysteines in the protein:
C-x-C, C-C, C, and C-x3-C. Members of the C-x-C
family are predominantly chemotactic for neutro-
phils. The C-C chemokines are predominantly
chemotactic for monocytes/macrophages, T lym-
phocytes, basophils, and eosinophils. C-C chemo-
kine expression has recently been shown to play an
important role in the pathogenesis of EAE. In
murine EAE, it has been shown that MIP-1a
expression in the CNS increases during the acute
phase in animals injected with the immunodomi-
nant, encephalitogenic peptide (PLP 139-151)
compared to naõÈve animals. Furthermore, adminis-
tration of anti-MIP-1a prevents the development of
both acute and relapsing disease (Karpus et al,
1995). In addition, MCP-1 is produced at higher
levels during relapses in EAE compared to naõÈve
animals and anti-MCP-1 can inhibit relapsing EAE
(Kennedy et al, 1998). In Lewis rats, MCP-1
expression parallels development of disease (Hulk-
ower et al, 1993). Recruitment of mononuclear cells
into the CNS is a major characteristic of pathogen-
esis in TMEV-IDD. Therefore, the production of
chemokines throughout the disease course of
TMEV-IDD and their role in determining suscept-
ibility was analyzed in the experiments described in
the present report.

Results

The clinical disease course of TMEV-IDD presents
as chronic, progressive. Unlike EAE, no episodes of
remission or relapse occur even though the
histopathology of each disease is similarly char-
acterized by CNS mononuclear cell accumulation
and demyelination. Figure 1 illustrates that SJL
mice infected i.c. with the BeAn strain of TMEV
begin to develop clinical signs approximately 30
days post infection and achieve maximum severity
80 days post infection. This is demonstrative of a

chronic-progressive disease course. At this time
there is persistent viral infection (Lipton et al, 1984;
Clatch et al, 1990), extensive CNS mononuclear cell
in®ltration (Pope et al, 1996), antigen-speci®c
delayed type hypersensitivity (Clatch et al, 1986),
and demyelination (Dal Canto and Lipton, 1975).

In order to determine a relationship between the
presence of chemokines in the CNS and develop-
ment of clinical disease, chemokine-speci®c ELISA
was utilized to analyze the expression of the C-C
chemokines MCP-1 and MIP-1a. SJL mice were
infected i.c. with 36106 plaque forming units (PFU)
of TMEV. Three mice were sacri®ced on days 0
(naõÈve), 11, 14, 22, 28, 30, 37, 44 and 52 post TMEV
infection. Days 11 and 14 post infection represent
the period of time during which peripheral viremia
develops accompanied by a neutralizing antibody
response. The neutralizing antibody clears the virus
from the periphery but not from the CNS (Lipton,
1975). Absence of the neutralizing antibody re-
sponse results in a more severe and lethal disease,
suggesting that initial control of virus replication is
a function of the ®rst phase of the anti-viral immune
response (Rodriguez et al, 1990). Days 22 and 28
represent the time immediately prior to the pre-
sentation of clinical disease. The onset of clinical
disease occurs in a majority of the mice at
approximately 30 days post infection. Days 37, 44
and 52 represent the time during which clinical
disease progresses from mild to more severe chronic
paralysis. The spinal cords were harvested, homo-
genized in PBS, and the clari®ed supernatants
subsequently analyzed by ELISA for the presence
of MCP-1 and MIP-1a. We have previously used this
strategy to identify the role of chemokines in

Figure 1 Clinical disease course following TMEV infection. SJL
mice were infected i.c. with 36106 p.f.u. of TMEV. Data are
expressed as the mean clinical disease score for all mice as a
function of days post TMEV infection. Disease severity was
scored by the scale described in the Materials and methods.
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relapsing EAE (Kennedy et al, 1998). Figure 2 shows
the expression pattern of these chemokines in the
CNS during the course of TMEV disease. Low, but
detectable, levels of MCP-1 and MIP-1a were seen
on day 0. By day 11 following TMEV infection, the
expression of MCP-1 and MIP-1a had increased
signi®cantly. Furthermore, MIP-1a and MIP-1b
expression in the CNS remained elevated through-
out the disease. Chemokine protein expression as
determined by speci®c ELISA following disease
induction was limited to the CNS and not seen in
peripheral lymphoid tissue such as spleen or lymph
nodes from the same animals (data not shown).
These data demonstrate that MIP-1a and MCP-1
expression in the CNS is associated with the
development of demyelinating disease following
TMEV infection.

TMEV demyelinating disease is characterized by
CNS mononuclear cell in®ltration. Therefore, CNS
expression of additional C-C (C10, MIP-1b, and
RANTES) and C-x-C (IP-10 and KC) chemokines
were analyzed at the mRNA level by RT ± PCR.
Expression of MIP-1b and RANTES has been shown
to be associated with disease development and
progression in EAE (Kuchroo et al, 1993; Godiska et
al, 1995; Kennedy et al, 1998). Furthermore, MIP-
1b (Peterson et al, 1997) and IP-10 have been

shown to be produced by astrocytes and therefore
their expression was also examined in these
experiments (Sun et al, 1997; Majumder et al,
1996; Vanguri et al, 1996). Figure 3 shows the
pattern of chemokine mRNA expression in the
spinal cords of TMEV-infected SJL mice. MIP-1a,
MCP-1, C10, IP-10 and MIP-1b mRNA was seen in
the CNS of mice 10 days following TMEV infection.
It is interesting to note that only RANTES and IP10
mRNA was seen in the CNS of mice 21 days
following infection. This is a timepoint following
peripheral viremia clearance (Lipton, 1975) and
prior to extensive mononuclear cell in®ltration and
development of clinical disease (Pope et al, 1996).
At day 37 post infection, when all mice in the
experiment were showing signs of clinical disease
development, MIP-1a , RANTES, MCP-1, C10, IP-
10, and MIP-1b mRNA expression was seen in the
CNS. Expression of these chemokines was also seen
at days 52 and 73 post infection. During this phase
of disease mononuclear cell in®ltration is extensive
and clinical disease progressed to a more severe
level. These data demonstrate that chemokine
mRNA was expressed in the CNS prior to clinical
disease development and throughout disease pro-
gression. Chemokine mRNA expression following
disease induction was limited to the CNS and not

Figure 2 CNS MIP-1a and MCP-1 protein expression during the course of TMEV-IDD in SJL mice. Mice were infected i.c. with TMEV
and spinal cords were harvested from three mice at each indicated time point (®lled dots). Each spinal cord was individually assayed
by ELISA for the presence of MCP-1 (A) and MIP-1a (B). The curve represents the mean clinical disease score for all mice while the
open bars represent the average chemokine concentration in the spinal cord lysates of three mice expressed as pg/ml in the clari®ed
lysate when compared to the recombinant standards.
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seen in peripheral lymphoid tissue (data not
shown).

Discussion

TMEV-IDD is a CD4+ T lymphocyte-mediated
demyelinating disease of the CNS that serves as a
model for MS. The disease is characterized by CNS
mononuclear cell in®ltration and demyelination

resulting in a chronic-progressive disease course.
The susceptibility of different mouse strains to
clinical disease is dependent upon several factors
including MHC and non-MHC genes. Regulation of
macrophage and T cell migration from the periph-
ery to the CNS is important for disease pathogen-
esis. Chemokine production in the CNS has recently
been shown to play an important role in the
development of EAE, a relapsing-remitting demye-
linating disease of the CNS (Karpus et al, 1995;
Hulkower et al, 1993; Ransohoff et al, 1993;
Godiska et al, 1995; Glabinski et al, 1997).
Furthermore, CNS chemokine expression has been
demonstrated in mice infected with lymphocytic
choriomeningitis virus (Asensio and Campbell,
1997) and mouse hepatitis virus (Lane et al, 1998).
In the present report we have demonstrated an
association of a subset of chemokines with TMEV-
IDD.

CNS expression of MCP-1 and MIP-1a protein
was evident by day 11 post infection in SJL mice
(Figure 2). This is a timepoint when there is high
titer anti-TMEV antibody response (Lipton, 1975) as
well as an anti-TMEV T cell response designed to
clear the viral infection (Borrow et al, 1992; Dethlefs
et al, 1997). Expression of these chemokines
remains elevated during the course of disease
(Figure 2). It is reasonable to assume that these
chemotactic factors induce an initial migration and
continued accumulation of T cells and monocytes
into the CNS. Pope et al (1996) have shown that the
percentage of CD4+ and CD8+ CNS in®ltrating cells
in TMEV-infected SJL mice gradually increases
between days 20 and 119 post infection. The
expression pattern in TMEV-IDD (Figure 2) differs
from what we have noted in relapsing-remitting
EAE (Kennedy et al, 1998). In the former we
observed both MIP-1a and MCP-1 expressed in the
CNS following disease induction while in EAE MIP-
1a was expressed in the CNS during acute clinical
disease and MCP-1 was expressed in the CNS
during relapsing EAE. The differences might be
attributable to disease induction. TMEV-IDD was
induced by direct infection of CNS resulting in
active viral replication and persistence in the CNS
(Lipton et al, 1984). In contrast, EAE was induced
by the adoptive transfer of PLP139-151-speci®c T
cells. Chemokine expression in EAE has been
shown to be associated with the initial in¯amma-
tory in®ltrate (Glabinski et al, 1995) whereas in
TMEV-IDD macrophages/microglia, astrocytes, and
oligodendrocytes can become infected and might
directly produce a different spectrum of chemo-
kines.

In order to further study the role of CNS
chemokine expression in TMEV-IDD we utilized
an RT ± PCR approach for the detection of chemo-
kines in which we do not have an established
immunoassay. This analysis showed that MIP-1a,
MCP-1, C10, IP-10 and MIP-1b mRNA was ex-

Figure 3 CNS chemokine mRNA expression during the course
of TMEV-IDD in mice. Mice were infected i.c. with TMEV.
Spinal cords were harvested from SJL mice at the indicated time
points and total RNA was isolated. Sequences of KC, MIP-1a,
RANTES, MCP-1, C10, IP-10, MIP-1b, and G3PDH (as an internal
control) were ampli®ed by PCR using 5' and 3' primers speci®c
for the particular target (see Table 1) and subsequently
electrophoresed in 2% agarose gels containing ethidium
bromide. The size of each ampli®ed sequence is indicated next
to the corresponding chemokine name.
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pressed at day 10 following viral infection (Figure
3). This time corresponds to the presence of anti-
viral T cells designed to clear the initial viral
infection (Borrow et al, 1992). Additionally, at this
timepoint there is very little T cell and monocyte
accumulation in the CNS (Pope et al, 1996). At the
time of clinical disease development, approxi-
mately day 37 in this study, MIP-1a, RANTES,
MCP-1, C10, IP-10 and MIP-1b mRNA expression
was detected in the CNS (Figure 3). It is interesting
to note that at this phase of initial clinical disease
development there is substantially more T cell
in®ltration into the CNS than at earlier times
following viral infection (Pope et al., 1996). The
difference in chemokine expression between these
two time points appears to be restricted to RANTES
thereby raising the possibility that RANTES is a
critical chemokine for the regulation of mono-
nuclear cell in®ltration just prior to clinical disease
development. We are currently testing this idea
using anti-chemokine treatment approaches, simi-
lar to what we have reported in the EAE system
(Karpus et al, 1995, 1998; Karpus and Kennedy,
1997; Kennedy et al, 1998). Neither KC (Figure 3)
nor MIP-2 (data not shown), two C-x-C chemokines
known to be neutrophil attractants, were found to be
expressed in the CNS following TMEV infection.
This is consistent with the idea that neutrophils are
rarely seen in the CNS in¯ammatory in®ltrate (Dal
Canto et al, 1995). The apparent discrepancy in
chemokine expression between the RT ± PCR and
ELISA analysis can be explained in part by the
transcriptional regulation of chemokine production
and the ability of extracellular matrix proteins to
bind and immobilize chemokines. In the case of the
former, MIP-1a and MCP-1 expression is not
constitutive, but rather transcriptionally regulated
and our analysis may be detecting waves of
chemokine mRNA expression. Furthermore, the
ability of extracellular matrix proteins to bind

chemokines has been suggested to be important in
the stabilization of these molecules for recognition
by receptor-bearing cells during migration (Bacon
and Schall, 1996) and may be the reason why
protein can be detected in the tissue over long time
periods. Overall, these data suggest that chemo-
kines are associated with mononuclear cell in®ltra-
tion during the course of TMEV-IDD development.
Further examination of speci®c chemokine activity
during disease development and progression will
hopefully reveal novel and speci®c targets for anti-
in¯ammatory intervention of the demyelinating
disease process.

Materials and methods

Mice
Five to six-week-old SJL/J female mice were
purchased from Harlan Sprague-Dawley (Indiana-
polis, IN, USA). Mice were 6 ± 7 weeks old at the
initiation of the experiments. Animal care was
provided according to Northwestern University
and National Institutes of Health guidelines.

Induction and clinical evaluation of TMEV-IDD
Mice were anesthetized by methoxy¯urane (Mal-
linckrodt Veterinary, Mundelein, IL, USA) inhala-
tion and injected in the right cerebral hemisphere
with 36106 PFU of TMEV (BeAn 8386 strain) in
30 ml of sterile DMEM. Mice were examined 2 ± 3
times per week for the ®rst 3 weeks then daily until
all infected animals were exhibiting neurological
signs of TMEV-IDD. After signs of clinical disease,
mice were examined biweekly. Clinical symptoms
were scored as (1) waddling gait, (2) severe
waddling gait and dif®culty with righting itself,
and (3) hind limb paralysis with incontinence.
Clinical data have been expressed as the mean
clinical score at a particular timepoint.

Table 1 PCR primer sequences

Chemokine Sequence Size

G3PDH

C10

IP-10

KC

MCP-1

MIP-1a

MIP-1b

RANTES

Sense
Anti-sense
Sense
Anti-sense
Sense
Anti-sense
Sense
Anti-sense
Sense
Anti-sense
Sense
Anti-sense
Sense
Anti-sense
Sense
Anti-sense

5'-ACCACAGTCCATGCCATCAC-3'
5'-TCCACCACCCTGTTGCTGTA-3'
5'-ATAACGCGTATGCAGGCCTCATACAAGAAATGG-3'
5'-TACTGCAGTCAAGCAATGACCTTGTTC-3'
5'-CCTATCCTGCCCACGTGTTGAG-3'
5'-CGCACCTCCACATAGCTTACAG-3'
5'-TCGCTTCTCTGTGCAGCGCT-3'
5'-GTGGTTGACACTTAGTGGTCTC-3'
5'-TCTCTTCCTCCACCACCATGCAG-3'
5'-GGAAAAATGGATCCACACCTTGC-3'
5'-GCCCTTGCTGTTCTTCTCTGT-3'
5'-GGCAATCAGTTCCAGGTCAGT-3'
5'-AACCCCGAGCAACACCATGAAG-3'
5'-CCACAATAGCAGAAACAGCAAT-3'
5'-AAGATCTCTGCAGCTGCCCTC-3'
5'-TTGAACCCACTTCTTCTGTGG-3'

452

312

341

539

582

258

540

243
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Antibodies
Goat anti-murine MIP-1a, anti-murine MIP-1b,
biotinylated anti-murine MIP-1b and rat anti-
murine CRG-2/IP-10 puri®ed antibodies were pur-
chased from R&D Systems (Minneapolis, MN, USA).
Rabbit anti-murine MIP-1a and anti-murine MCP-1
antibodies were generously supplied by Dr Steven
Kunkel (University of Michigan, MI, USA).

ELISA analysis
The spinal cords from three mice were harvested at
each timepoint and each sample was homogenized
in 1 ml of PBS. The homogenate supernatant was
collected after centrifugation (4006g) for 10 min.
Expression of MCP-1 was determined by immu-
noassay kit (Endogen, Cambridge, MA, USA)
according to the manufacturer's instructions. ELISA
analysis was performed for expression of MIP-1a,
MIP-1b, and IP-10 as previously described (Kenne-
dy et al, 1998). Brie¯y, ¯at bottom microtiter plates
were incubated with 3.2 mg/ml of capture antibody
in borate-buffered saline overnight. Nonspeci®c
binding sites were blocked with 2% BSA in PBS
for 1 h. The plates were washed and samples added
in triplicate. Biotinylated goat anti-rabbit detection
antibody (Zymed, South San Francisco, CA, USA)
was then added for 1 h. The wells were developed
using streptavidin-peroxidase and TMB one-step
substrate (Dako Corporation, Carpinteria, CA, USA)
and absorbence measured at 450 nm. All incuba-
tions were performed at room temperature. A series
of dilutions of puri®ed recombinant protein (R&D
Systems) was used to generate standard curves for
each chemokine. Chemokine expression levels
were quantitated by comparison to the standard
curves.

Isolation of RNA
Spinal cords from TMEV-infected mice were
harvested and RNA isolated as described previously
(Begolka et al, 1998). Brie¯y, three mice from each
time point following TMEV infection were anesthe-
tized with methoxy¯urane and sacri®ced by total

body perfusion through the left ventricle with PBS.
After harvesting the spinal cords, a single cell
suspension was made from the tissue and pelleted
by centrifugation. Pellets were resuspended in 4 M
guanidinium isothiocyanate/50 mM Tris-Cl
(pH 7.5)/25 mM EDTA (Life Technologies,
Gaithersburg, MD, USA) and 1% 2-ME and 0.5%
N-lauroylsarcosine (Sigma-Aldrich, St. Louis, MO,
USA). The suspension was forced through a 23-
gauge needle to aid in shearing the DNA. Total RNA
was isolated by high-speed gradiant centrifugation
of the suspension through 5.7 M CsCl for 20 h at
48C. RNA was resuspended in diethylpyrocarbo-
nate-treated water.

RT ± PCR
Reverse transcription of poly A mRNA into cDNA
was accomplished using advantage-RT kit (Clon-
tech, Palo Alto, CA, USA) oligo (dT) primers
according to the manufacturer's instructions. Se-
quences of C10, IP-10, MCP-1, MIP-1a, MIP-1b, MIP-
2, RANTES, and G3PDH (as an internal control)
were ampli®ed by PCR using 5' and 3' primers
speci®c for the particular chemokine (Table 1).
Primer sets were designed to span multiple introns
to eliminate genomic DNA contamination. The
samples were ampli®ed for 30 cycles of 948C,
628C, and 728C (MCP-1, MIP-1a, and MIP-1b) or
948C, 658C and 728C (C10, IP-10, KC, and RANTES)
and then electrophoresed in 2% agarose gels
containing ethidium bromide. G3PDH can be
ampli®ed at either temperature set.
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