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Neurovirulence of influenza A virus
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Infection of mouse brain with influenza A virus has provided a valuable model
for investigating viral adaptation and virulence. These studies have indicated
important roles for the neuraminidase (NA), matrix (M), non-structural (NS)
and haemagglutinin (HA) genes of the virus in determining neurovirulence. For
the NA, three changes close to the active site have been identified in the
neurovirulent strains, which also display altered enzyme properties, including
changes in specificity. In the M gene, two specific amino acid substitutions in
the -M, protein have been observed, Ala*'—»Val and Thr'**-Ala, which
correlate with increased virulence for mouse. Such changes are likely to affect
the pH-dependent association/dissociation of M, with the viral ribonucleopro-
tein, as well as growth and virulence. The changes in the NS gene in the
neurovirulent strains cause alterations in the mRNA secondary structure to
mask the 3’ splice site, and correlate with reduced splicing of the NS gene in
these strains. Finally, the increased virulence of the HA gene occurs by at least
three different mechanisms: loss of a glycosylation site, a change at the cleavage
site, and a substitution which may increase the pH of fusion. These observations
define a useful set of parameters with which to analyse epidemic virus strains
that have been associated with elevated CNS symptoms in humans. In addition,
the changes present in the neurovirulent influenza strains show interesting
parallels to those in the neurovirulent derivatives of other viruses, suggesting
different viruses utilise common strategies to permit replication in the brain.
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Introduction

Neurovirulence

Virulence of influenza virus for mouse brain, or
neurovirulence, has been an important topic in the
development.of influenza virus research. Neuro-
virulence is defined as the ability to undergo
multicycle replication in mouse brain, inducing
neuropathology and acute encephalitis. In adult
mice, this only occurs after intracerebral inocula-
tion, while in newborn mice it can also occur as part
of generalised pantropic spread after intranasal
infection (Wagner, 1955). Neurovirulence was one
of the first markers for recombination and its study
'has proved pivotal in establishing some of the most
important concepts of influenza virulence and
pathology. Application of biochemical and mole-
cular biological analysis to this area of research in
recent years has unravelled some of the molecular
changes required for adaptation to mouse brain, and
the molecular mechanisms which mediate neuro-
virulence. The purpose of this review is to provide
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an overview of the phenomenon of influenza
neurovirulence and to present our current under-
standing of the process of adaptation of this virus to
mouse brain.

Central nervous system infection

The involvement of the central nervous system
during influenza infections in humans is still
unresolved, although there appears little doubt that
encephalopathy does occur with some patients of
influenza (Kilbourne, 1987). For example, a causal
relationship has been identified between the 1918/9
pandemic and encephalitis lethargica, with its
common manifestation in post-encephalitic Parkin-
sonism (Ravenholt and Foege, 1982). In addition,
the 1957 pandemic produced a number of reports of
central nervous system manifestations (Horner,
1958; Sugiura et al, 1958). Likewise, the ‘Alaskan
influenza epidemic in 1973 provided further evi-
dence for encephalopathy as an atypical manifesta-
tion of the disease (Edelen et al, 1974). Virus has
also been isolated from the brain tissue (Murphy
and Hawkes, 1970) and spinal fluid (Thraenhart et
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al, 1975; Rose and Prabhakar, 1982) of fatal cases of
human influenza infection, and viral antigen has
been found in ependymal cells (Frankovd et al,
1977). Moreover, during the epizootic in seals
resulting from infection with the avian strain A/
seal/Mass/80 (H7N7), virus was isolated from both
the lungs and brains of dead seals, caused con-
junctivitis in laboratory workers, and was capable of
replicating in the brains of mice (Webster et al,
1981). Therefore, the ability of influenza virus to
replicate in the central nervous system of mice has
been studied in detail as a model of the central
nervous system manifestations of the human dis-
ease. While the artificial route of this model means
such studies have little relevance to epidemiologi-
cal aspects of influenza biology, they have provided
huge insights into many aspects of influenza virus
replication and adaptation.

Typical influenza replication

Influenza A virus particles are surrounded by a
host-derived lipid envelope, from which protrude
viral glycoprotein spikes, corresponding to the
haemagglutinin (HA) trimer and the neuraminidase
(NA) tetramer, and which also contains the M,

-protein tetramer (Murphy and Webster, 1990).

Beneath this is an electron dense core, composed
of matrix (M,) protein, which interacts with the
helical internal ribonucleoprotein complexes
(RNPs). These consist of the eight segments of viral
genomic RNA (vRNA) surrounded by a nucleopro-
tein (NP) backbone, with the three polymerase
proteins (PB1, PB2 and PA) in close association,
attached at their end (Krug et al, 1989).

Infection is initiated by the attachment of the
viral HA spikes to sialic acid-containing receptors
on host cells (Kilbourne, 1987). Once attached,
virus-cell fusion occurs via an endocytic path-
way, in which the endosomes are acidified by the
action of proton pumps (Wharton, 1987). This
acidification has two effects: (i) there is a
conformational change allowing interaction of
the fusogenic HA, N-terminus with the cell
membrane (Skehel et al, 1982), and (ii) the M,
dissociates from the RNPs (Wharton et al, 1989).
This allows the RNPs to be released into the cell
and enter the nucleus, where replication is
facilitated by the four proteins of the RNP (Huang
et al, 1990). Later in infection the M, protein has
a role in promoting export to the cytoplasmic
membrane by associating with newly synthesised
RNPs in the nucleus, and in subsequent virions
(Helenuis, 1992). Neuraminidase activity is a
prerequisite for elution of virus from infected
cells due to its ability to remove receptors from
the haemagglutinin by cleaving the terminal sialic
acids (Colman, 1989). It probably also prevents
virus aggregation, and assists in penetration of the
mucous layer in the respiratory tract (Lamb,
1989).

Infection of mouse brain with influenza

Abortive replication in mouse brain

In neonatal mice, several cycles of replication can
occur with non-adapted strains (Fraser et al, 1959;
Mims, 1960). However, in adult mice, the intracer-
ebral administration of non-adapted human virus
initiates an abortive infection of ependymal cells,
the destruction of which can lead to a non-
inflammatory hydrocephalus (Tyrrell and Cameron,
1957; Mims, 1960; Johnson and Johnson, 1972).
Early studies describing the incomplete replication
of A/WS/33 and A/PR/8/34 in mouse-brain showed
a single cycle increase in haemagglutinin (HA) and
neuraminidase (NA) activity, and nucleoprotein
(NP)-associated antigen (Schlesinger, 1950; 1953).
However, only a small proportion of viable virions
were produced and these lacked a cleaved HA
(Lazarowitz and Choppin, 1975; Klenk et al, 1975).
Although a minority of these could be activated by
trypsin, this still represents a vastly smaller amount
than obtained with a neurovirulent strain (Schle-
singer et al, 1989). \

As a model for the abortive infection, replication
of the non-neurovirulent strains A/PR/8/34 and A/
WS/33 has been studied in detail in mouse embryo
brain (MEB) cell cultures, which are established
from embryos of 17 to 20 day gestation. Six days of
incubation produces ‘young’ MEB cultures, repre-
senting undifferentiated cells, which support com-
parable replication of both neurovirulent and non-
neurovirulent strains. ‘Aged’ MEB cultures, on the
other hand, representing differentiated >21-day
old cultures, and containing predominantly astro-
cytes, with some oligodendrites and neurons, as
well as a few fibroblasts, do not. While neuroviru-
lent strains can permissively infect the astrocytes,
oligodendrites and neurons, the non-neurovirulent
strains only show signs of replication in oligoden-
drites and neuroms; and even here fail to induce
cytopathic effects (Bradshaw et al, 1989a; 1990).

Other work on these non-heurovirulent strains
has focused on the matrix (M) ana“npg-structural,
(NS) genes. These genes encode proteins translated
from either full-length transcripts, M, and< NS,
respectively, or spliced mRNA species, M, and
NS, respectively (Lamb, 1989). For both the A/PR/8/...
34 and A/WS/33 strains, expression of M, and NS,
was reduced, while M, and NS, were produced at
normal levels or higher levels compared to those
typical of a productive infection (Bradshaw et al,

1989b; 1990). This altered expression was duetoan =~ ~

increased ratio of spliced to unspliced M and NS
mRNA. The increased splicing was found to be
related to the level of differentiation of the cells,
with less differentiated cell types showing reduced
splicing (Bradshaw et al, 1989b; 1990). This is
similar to that observed in particular cell lines in
which influenza virus shows abortive infection
(Lohmeyer et al, 1979; Conti et al, 1980; Smith



and Hay, 1982; Inglis and Brown, 1984; Giesendorf
et al, 1984). In addition, there was a lack of
spontaneous HA cleavage, which would explain
the requirement for trypsin to activate the small
number of viable virions produced (Schlesinger et
al, 1989). This study also found that the availability
of the M, protein is a factor influencing the rate or
extent of assembly of potentially infectious virions,
and in this respect neurovirulent strains differed
quantitatively rather than qualitatively.

Adaptation of influenza to mouse brain

The first isolated human influenza A virus strain, A/
WS/33 (Smith et al, 1933), was successfully adapted
to mouse brain to produce two neurovirulent
variants, A/NWS/33 (NWS) (Stuart-Harris, 1939)
~and A/WSN/33 (WSN) (Francis and Moore, 1940).

~ These variants undergo multiple cycles of replica-

tion in the brains of adult and neonatal mice and
cause fatal encephalitis (Burnet, 1951; Tyrrell and
Cameron, 1957; Fraser et al, 1959; Miyoshi et al,
1973). Both strains are also pneumovirulent for
mice as a result of earlier propagation in mouse lung
(Stuart-Harris, 1939; Francis and Moore, 1940),
while the NWS strain is capable of causing a
generélised viraemia, including neuropathy, in
mice infected via the natural route (Wagner, 1955).

Apart from NWS and WSN, which were specifi-
cally adapted to mouse brain, and reassortants
thereof, a limited number of other laboratory-
derived stains also show neurovirulence even
though they were not experimentally adapted.
These include particular reassortants of the A/
FPV/34 (FPV) strain (Vallbracht et al, 1979), a
laboratory variant of A/Seal/Mass/1/80 called
SC35,
(Scheiblauer et al, 1995). Studies of these strains
has provided additional information on the deter-
minants of neurovirulence.

Interestingly, the NWS and - WSN variants are
more broadly cytopathogenic than non-neuroviru-
lent strains. WSN' produces cytopathic effects in
differentiated human skeletal muscle cells (Arm-
strong et al, 1978), in a neuroblastoma cell line
{Nakajima and Sugiura, 1980), in organotypic
cultures of embryonic mouse hypothalamus (Gam-
boa et al, 1974) and ependymal organ cultures
(Kohn et al, 1981). Similarly, NWS replicates with
cytopathic effect in human diploid cell lines
(Kilbourne et al, 1964; Ghendon et al, 1979). In
addition, the FPV strain is also highly virulent, and
~ able to cause a generalised infection of chickens,
including the brain (Jungherr et al, 1946), while its
highly neurovirulent recombinations produce. a
generalised viraemia in mice (Vallbracht et al,
1980). Similarly, the neurotropic SC35 variant of
A/Seal/Mass/1/80 also causes systemic infection in
mice and chickens and has gained the ability to
infect MEB cell lines (Scheiblauer et al, 1995). This
suggests that certain of the changes required for

and further derivatives of this variant

Neurovirulence of influenza
AC Ward

s

neurovirulence can act as general virulence deter-
minants. In addition, the chick brain-virulent strain
FPV has been successfully adapted to mouse brain
by serial passage, suggesting that mammalian and
avian neurovirulence determinants may be similar
(Schifer, 1955).

Molecular basis of neurovirulence

~ The variants NWS and WSN have acquired

mutations in the genes which control virulence for
mouse brain. However, given problems of strain
variability, a number of levels of critical analysis
have been utilised in order to associate a particular
change with neurovirulence. These have included:
(i) determination of the genes involved by reassort-
ment; (ii) confirmation of sequences from different
isolates, direct sequencing, etc; (iii) analysis of both
of these independent neurovirulent derivatives; (iv)
comparison of changes to other influenza sequences
to assess normal variability at these sites; and (v)
biological confirmation of predicted effects, for
example, analysis of differences in mRNA splicing.
By the use of this approach, we can have
confidence in the importance of these changes to
neurovirulence.

Genes responsible for neurovirulence.

By analysis of reassortants from crosses between
WSN and the non-neurovirulent strain A/Aichi/2/
68, Sugiura and Ueda (1980) have shown that the
NA, M and NS genes from WSN were required to
express full neurovirulence in adult mice. The same
genes were needed for efficient replication in a
neuroblastoma cell line (Nakajima and Sugiura,
1980). However, since reassortants lacking the WSN
NA gene were not able to multiply in mouse brain, it
is likely that the M and NS genes ,function as
accessory virulence factors to enable efficient
replication, while the NA is the major neuroviru-
lence determinant (Sugiura and Ueda, 1980). The
NA gene has also been implicated as the major
neurovirulence determinant for NWS (reviewed in
Sugiura, 1975), with other genes implicated as
accessory factors (Hobson et al, 1968; Mayer et al,
1973; Sugiura, 1975). However, unlike WSN, re-
assortants of the NWS strain can circumvent the
requirement for the NA and retain neurovirulence if
they possess the HA of the neurovirulent parent
(Mayer et al, 1973).

Studies of the neurovirulent reassortants of FPV
have revealed the HA and M genes of the FPV strain
are important for expression of neurovirulence
(Scholtissek et al, 1979; Vallbracht et al, 1979;
1980). In addition, certain polymerase genes, and
occassionally the NP gene, are required from non-
neurovirulent strain, probably reflecting a gene-

constellation effect in this system (Scholtissek et al,”

1979; Vallbracht et al, 1980; Bonin and Scholtissek,
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1983). In one set of recombinants, the NS gene also
contributed to neurovirulence (Bonin and Scholtis-
sek, 1983). Changes in the HA gene were also
implicated in the acquisition of neurovirulence of
the SC35 variant of A/Seal/Mass/1/80, although

subsequent derivatives which showed increased

neurovirulence had no further changes in the HA,
again suggesting other genes can contribute to
neurovirulence (Scheiblauer et al, 1995).

Role of the NA gene

The NA gene encodes the enzymatically active
glycosylated surface protein neuraminidase, which
is able to catalyse the cleavage of the a-ketosidic
linkages between the terminal sialic acid residue
and the adjacent residue on the carbohydrate chain
(Gottschalk, 1957). While the NA may be involved
in viral penetration to respiratory epithelial cells by
its action on mucus (Burnet et al, 1947; Burnet,
1948), it also removes receptors from the HA to
prevent self-aggregation and to allow release of
virus from the cell (Seto and Rott, 1966; Palese et al,
1974). While it is not clear how the NA contributes
to neurovirulence, an important factor is its role of
indirectly facilitating cleavage activation of the
viral HA in cells which normally fail to cleave the
HA (Schulman and Palese, 1977; Ghendon et al,
1979; Nakajima and Sugiura, 1980). The importance
of HA cleavage for neurovirulence is demonstrated
by the analy31s of reassortants between WSN and A/
Aichi/2/68, in which the presence of the WSN NA
allowed replication both in mouse brain (Sugiura
and Ueda, 1980) and in.a neuroblastoma cell line
(Nakajima and Sugiura, 1980), with the HA cleavage
shown to be important for replication in both
systems (Nakajima and Sugiura, 1980; Schlesinger
et al, 1989). In other cell types as well the NA of the
neurovirulent strains promotes HA cleavage. For
example, the NWS NA promotes HA cleavage in
human embyro fibroblast (HEF) cells and allows
infectious virus to be produced while the A/WS/33
NA is incapable of facilitating HA cleavage and so
infectious virus is not produced (Ghendon et al,
1979). Plaque formation of WSN in MDBK cells is
also a result of the NA promoting cleavage of the HA
(Schulman and Palese, 1977).

Sequence analysis of the NAs from the neuro-
virulent strains NWS and WSN has revealed five
changes in common relative to their parent, A/WS/
33 (Ward, 1995a). Comparison to the three-dimen-
sional structure and other available sequences
identified three positions—130, 133 and 414-as
likely candidates for neurovirulence. These lie
close to the active site and are at otherwise highly
conserved positions (Ward, 1995a). Site-directed
mutagenesis on the WSN NA gene using reverse
genetics has provided decisive evidence of the
carbohydrate at Asn®*® in neurovirulence. The
glycosylation site was reintroduced into the WSN
sequence and the resultant strain was no longer

neurovirulent. Two revertant viruses recovered
were found to possess changes which again
removed the glycosylation site at position 130 (Li
et al, 1993). Therefore, the absence of a carbohy-
drate moiety at this site is one necessary condition
for expression of neurovirulence. However, since
the mutagenesis was performed on a WSN back-
ground, the importance of the other changes in the
manifestation of neurovirulence cannot be dis-
counted.

The non-neurovirulent glycosylation site mutant
of WSN showed decreased activity on large sub-
strates compared to WSN (Li et al, 1993), which the
authors infer might be important for neuroviru-
lence. However, the NWS NA is less able to cleave
large substrates than A/WS/33 (Ward, 1995a) which
is contrary to this argument. Likewise, analysis of
the NA enzymes from the neurovirulent strains and
A/WS/33 indicated no correlation between neuro-
virulence and either overall activity or preference
for particular N-substitutions (Hobson et al, 1968;
Ward, 1995a). In contrast, both NWS and WSN
showed an increased preference for small substrates
compared to A/WS/33 (Ward, 1995a), as did WSN
compared to the glycosylation site mutant (Li et al,
1993). In addition, the enzymes from both neuro-
virulent strains showed an increased preference for
substrates with 2—3 linkages, and their activity was
potentiated by Ca* ions (Ward, 1995a).

So what function does the NA perform which
facilitates HA cleavage? Li et al. (1993) argued that
the NA of the neurovirulent strains is able to remove
particular sialic acids from the HA allowing greater
accessibility of host proteases to cleave the HA.
However, if a specific carbohydrate on the HA is

responsible for blocking access then it is surprising

that HA mutants which had lost the site for this
carbohydrate are not- isolated instead of NA
mutants, since there are many examples of the
removal of specific_carbohydrates from the HA
correlating with 1ncreaseﬂ»v1rulence (Kawaoka et al,
1984; Anders et al, 1990; .and de Koning-
Ward, 1995). Other possibilities, the
be considered. For example, the NA may
cleave particular sialic acids from a host pro
which then allows it to access the HA. Also, w

must the Asn®*® glycosylation site be removed?\

Perhaps this (and other?) changes in the NA lead
to an altered specificity which allows novel sialic
acid residues to be cleaved. Alternatively, specific
lectins might bind.to the carbohydrate at Asn®° in
mouse brain and, since such lectin binding can
sterically inhibit NA function (Palese et al, 1974),
the loss of this glycosylation site might therefore be
able to overcome the inhibition.

Role of the M gene

The M gene encodes two viral structural proteins,
M, and M,. The M, protein lines the inner layer of
the viral membrane such that it contacts both the

’



internal ribonucleoprotein (RNP) complex and the
surface glycoproteins (Ruigrok et al, 1989b). The M,
protein binds lipid (amino acids 62—68 and t14—
133) (Gregoriades and Frangione, 1981), RNA/RNP
[residues 90-108 and 128-164 (Ye et al, 1987;
1989), or 70~-140 (Hankins et al, 1989)], and other
M, proteins to form oligomers (Gregoriades and
Frangione, 1981). During infection the binding to
nuclear RNP promotes export to the cytoplasmic
membrane and virus assembly (Martin and Hele-
nius, 1991; Helenius, 1992). The membrane-asso-
ciated M, protein protects the structural integrity of
the acid-sensitive HA by modulating the effect of
low pH encountered in the trans-Golgi (Sugrue et al,
1990). The M gene has been implicated as an
accessory virulence determinant for mouse brain
(Sugiura and Ueda, 1980), with the M, protein
identified as the rate-limiting step of virus assembly
(Lazarowitz et al, 1971; Schlesinger et al, 1989).

To identify the changes responsible for the mouse
brain virulence capabilities of the M gene, the
sequence of the A/WS/33 M gene was compared to
those of the mouse-brain adapted variants NWS and
WSN (Ward, 1995b). The nucleotide substitutions
in the neurovirulent variants only affect the M,
protein. There is an Ala**—Val substitution in both
NWS and WSN, as well as- Thr**-sAla and
~ Ala**’ - Thr changes only in NWS. Examination of
M, sequences of other strains identified a correla-
tion between the first two of these changes and
increased virulence for mouse lung (Ward, 1995b).
Thus, the acquisition of at least one of these specific
amino acid substitution in the M, protein (Ala* —
Val and/or Thr***->Ala) appears important for full
expression of neurovirulence.

The change at position 41 has been correlated
with the acquisition of resistance to a monoclonal
antibody to the M, protein (Zebedee and Lamb,
1989a). The results of this study imply that the M,
change may compensate for a loss“of M, function
caused by the presence of the antibody, such as
during the passage of the virus through the acidic
endosome after endocytosis, where the M, protein
seems to-play an important role. In support of the
Val*’ ¢hange having a role in this part of the virus
,ldiﬂi}/‘hc);:le, the WSN M, protein has been shown to

issociate at a higher pH than a strain with an Ala*
(Yasuda et al, 1993b). Similarly the change at
position 139 is in the region responsible for RNA/
' RNP binding (Ye et al, 1987; 1989) and so may affect
i this same process. Indeed it has been suggested that
the Thr**—Ala change may affect the pH-depen-
dent association/dissociation of M, with RNP. to

" control virulence and growth (Smeenk and Brown, .

1994). It seems likely that the ‘Ala**—Val change
may also affect growth since the WSN M gene has
been linked to increased growth rate in eggs
(Klimov et al, 1991) and MDCK cells (Yasuda et
al, 1993b), while the A/PR/8/34 M gene (which also
possesses the Val*!) has also been implicated as a
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determinant of in ovo growth rate (Baez et al, 1980).
Further investigations into this potentially common

mechanism of increasing virulence and growth.

seem warranted. These changes, however, have
been shown to be present in mouse-lung adapted
variants of influenza A virus, with the Thr**— Ala
change directly shown to control virulence for
mouse lung (Smeenk and Brown, 1994). Theérefore,
the specific amino acid substitutions in the M,
protein would seem to correlate with adaptation to
mouse tissue in general rather than specifically to
mouse brain (AC Ward and EM Anders, manuscript
in preparation).

As discussed earlier, increased splicing of thlS

gene, with a concomitant decrease in M, levels, was
observed in the non-néurovirulent strains A/PR/8/

34 and A/WS/33, while WSN showed decreased .

levels of splicing and increased levels of M, protein.
In addition, NWS showed decreased M gene
splicing relative to A/WS/33 (Ward et al, 1995a).
Interestingly, there were no other changes in the M
gene to account for these ‘altered splicing levels
(Ward, 1995b). This suggests that splicing of this
gene may be regulated in trans, consistent with

other studies (Lamb and Lai, 1982; Valcdrel et al,

1993] The importance of the NS gene in this regard
is discussed belaw.

Role of the NS gene

The NS gene encodes two proteins, NS, and NS2 :

The synthesis of NS, is essential for the normal
replication of vVRNA (Hatada et al, 1990), it interacts
directly with vVRNA (Hatada et al, 1992), and has
been shown to increase translation of specific viral

mRNAs, particularly the M, message (Enami et al, -

1994). The NS, protein interacts directly with the

M, protein (Yasuda et al, 1993a; Ward et al, 1995b) -

and has been shown to be present in the influenza
virus particle (Richardson and Akkina, 1991; Ward
et al, 1995b). A mutant NS, facilitates aberrant
replication of one of the polymerase genes (Odagiri
and Tobita, 1990), implying a role for the protein in
viral packaging.

As eluded to earlier, A/WS/33 showed restrlcted
expression of NS, and increased expression of NS,
in differentiated MEB culture relative to undiffer-
entiated cells, which is due to increased splicing of
the NS gene (Bradshaw et al, 1989b; 1990). In

contrast, the levels of splicing of the NS gene remain. -

unchanged with the neurovirulent derivative WSN;
which allowed levels of NS, protein to remain high
(Bradshaw et al, 1989b; 1990). Sequence compar-
ison of the NS genes of the neurovirulent strains
relative to their parent revealed changes around the
3’ splice-site which serve to-increase the thermal
stability of this region, and to sequester the branch-
point A residue in secondary structure (Ward et al,
1993; 1995a). This was correlated with decreased
splicing of both NS and M genes (Ward et al, 1995a).
Therefore, the masking of the 3’ splice-site in
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neurovirulent strains can counteract the inherent
increase in splicing of the NS gene in mouse brain.
Thus, the levels of spliced NS mRNA in the mouse
brain can return to those commensurate with a
productive infection of the neurovirulent strains. In
this regard, the changes in M gene splicing are likely
to be a result of the increased expression of the NS,

protein seen in WSN (Bradshaw et al, 1990) and

NWS (AC Ward, unpublished) as a result of the
reduction in NS gene splicing, since the NS, protein
controls splicing of the M gene (Hatada et al, 1990;
Snyder et al, 1990). Therefore, the increased M,
protein seen in neurovirulent strains can be
explained by both the decreased splicing of the M
gene and stimulation of M, mRNA translation, also
attributable to the increase in NS, (Enami et al,
1994). !

Thus, the contribution of the NS gene to
neurovirulence is at the level of mRNA splicing,
directly controlling the relative levels of NS, and
NS., and indirectly the levels of M, and M, protein.
It is likely the indirect effect may be the most
important, since the levels of M, protein is the rate-
limiting step of viral replication (Schlesinger et al,
1989), although a role for the increased levels of NS,
in cytopathology cannot be discounted (Bradshaw
et al, 1990). In this way, the changes in the NS gene
can act in concert with other changes to allow
effective replication in the mouse brain.

Role of the HA gene

The HA mediates attachment of host-cell sialyloli-
gosaccharide receptors via a binding site pocket at
the distal tip of the molecule, which determines the
binding specificity (Wilson et al, 1981; Rogers et al,
1983; Weis et al, 1988). In its cleaved form the HA
consists of two disulphide linked subunits which

‘are non-covalently associated as an HA trimer

(Wharton et al, 1989). Cleavage of the HA is
essential for infectivity of the virus particle (Lazar-
owitz and Choppin, 1975; Klenk et al, 1975). This
permits fusion of the viral envelope with the
secondary endosome, a process activated by con-
formational changes in the HA at the acidified pH of

'the endosome, which exposes the fusogenic N-

terminus of the HA, subunit (Wiley and Skehel,
1987; Ruigrok et al, 1989a). The importance of HA
cleavage for neurovirulence is demonstrated by the
analysis of reassortants between WSN and A/Aichi/

-2/68, in which the presence of the WSN NA allowed

replication both in mouse brain (Sugiura and Ueda,
1980) and in a neuroblastoma cell line (Nakajima
and Sugiura, 1980) through facilitating HA clea-
vage. The HA of the NWS strain is sufficient for
neurovirulence, since it can dispense with its NA
and retain neurovirulence (Mayer et al, 1973). This
is presumably because the NWS HA is highly
susceptible to cleavage in a wide variety of systems
(reviewed in Kilbourne, 1963) which obviates the
absolute need for the NA to facilitate its cleavage. In

support of this, the highly cleavable HA derived
from A/FPV/Rostock/34 is also essential for the
neurovirulence of progeny reassortants (Scholtissek
et al, 1979; Bonin and Scholtissek, 1983), while the
SC35 variant of A/Seal/Mass/1/80 which is capable
of replication in mouse brain also possesses a highly
cleavable HA (Li et al, 1990). However, HA cleavage
is not the only determining factor in virus replica-
tion; for example, WSN undergoes abortive infec-
tion in HeLa cells despite HA cleavage occurring
(Gujuluva et al, 1994).

Sequence analysis has revealed that the virulence
capabilities of the NWS HA may involve at least
three different mechanisms: (i) loss of a potential
glycosylation site; (ii) a change at the cleavage site;
and (iii) a substitution in HA, which may increase
the pH of fusion (Ward and de Koning-Ward, 1995).
The potential glycosylation site lost is at Asn*, in
the vicinity of the receptor binding site. Therefore,
one mechanism to explain the increased virulence
of NWS is via a decreased sensitivity to lectins, such
as B inhibitor, a component of normal serum which
binds mannose (Hartley et al, 1992), resistance to
which has been shown to accompany adaptation to
mouse lung (Brown, 1990; Gitelman et al, 1986). In
support of this, the equivalent glycosylation site is
lost in the bovine serum-resistant variants of
Mem?71,-Bely (Anders et al, 1990) and A/Phil/82
(Hartley et al, 1992) which have both gained
resistance to mouse B inhibitor. Loss of this site is
also seen in the mouse-adapted strains A/PR/8/34
(Winter et al, 1981) and WSN (Hiti et al, 1981), both
of which are resistant to guinea-pig § inhibitor
(Yamamoto et al, 1987), which has similar proper-
ties to mouse g inhibitor (Anders et al, 1994). Other
studies have also linked mouse-adaptation with loss
of glycosylation sites. For example, studies with the
H3N2 reassortant virus A/Phil/82 has also shown
that the successive loss of potential glycosylation
sites at residues 165 and 246 is associated with
significant stepwise Increases in the pathogenicity
of this virus for mouse lung (Hartley et al, 1992; CA
Hartley, PC Reading, AC Ward and_EM Anders,
manuscript submitted), while the mouse lung-
adaptation of the H1 strain A/USSR/77 showed
two successive amino acid substitutions, with loss
of glycosylation sites at residues 87 and 127 (94a
and 131 in H3 numbering), both in vicinity of,
receptor-binding site (Gitelman et al, 1986; Kaverin *_
et al, 1989). Thus, loss of glycosylation sites from
the HA may represent a common mechanism for
mouse-adaptation. (AC Ward and EM Anders,
manuscript in preparation).

The NWS strain also has a unique Ser’*®*—Phe

- change at the residue immediately preceeding the

Arg-Gly cleavage site between HA, and HA, (Ward
and de Koning-Ward, 1995). Only the WSN strain
has a large hydrophobic residue at this position
(Hiti et al, 1981), and although the HA of WSN has
not been implicated in neurovirulence it is, like the



NWS HA, highly cleavable in a number of systems
(Lazarowitz and Choppin, 1975). Therefore, to
explain the increased cleavability of the NWS and
WSN HaAs, it could be argued that the amino acid
change at the cleavage site allows a protease with
specificity for a large hydrophobic residue at the —2
position to cleave the HA of these strains. A
plasmin-like enzyme is a good candidate because
the WSN HA can undergo cleayage activation by
plasmin, unlike other strains tested, obviating the
need for a ‘trypsin-like enzyme wich is normally
required (Lazarowitz et al, 1973; Lazarowitz and
Choppin, 1975). As a corollary, the HA of the FPV
strain can circumvent the need for a trypsin-like
enzyme for initial cleavage by the presence of the
basic stretch amino acids at the cleavage site (Bosch
et al, 1981) which can be recognised by furin or
furin-like proteases (Stieneke-Grober et al, 1992).
Similarly, the SC35 variant shows increased HA
cleavage as a result of the insertion of three arginine
re_sid;J.es adjacent to the HA cleavage site (Li et al,
1990). = - ‘ '

In addition, the NWS HA gene has a Asp'?*—Val
change in the HA,, a residue almost completely
conserved in field strains (Ward and de Koning-
Ward, 1995). Non-consepvative changes at this site
in experimentally-derived strains have been corre-
lated with an increased pH optimum of HA-
mediated endosome fusion (Daniels et al, 1985).
Similarly, the single amino acid change in HA,
(Gly*~Trp) which results in increased virulence
of the mouse-adapted variant of A/FM/1/47 is also
at such a site (Smeenk and Brown, 1994). By
analogy, variants of influenza selected for their
ability to grow in MDCK cells have an elevated
fusion pH threshold (Rott et al, 1984). Alterations in
the pH of fusion may, therefore, represent a general
pathway to increased virulence, and so a likely
mechanism to explain at least some of the increased
virulence of the NWS strain.

Biology of neurovirulence

Replication of non-adapted strains in mouse brain
The sites where the replication of non-adapted
strain (such as A/WS/33) in the mouse brain is
deficient, or liable to inhibition, are presented
/" gchematically in Figure 1. The HA of the A/WS/33
" strain is largely uncleaved in this tissue (Schle-
singer et al, 1989), and so fusion of the virus is
blocked. In addition, low levels of M, observed for
this strain affects assembly, since the availability of
the M, protein determines both the extent and rate
-of assembly of potentially infectious progeny vir-
ions in mouse brains (Schlesinger et al, 1989). The
low levels of M, protein observed during infection
of mouse brain with A/WS/33 presumably result
from the reduced levels of the NS, protein (Brad-
shaw et al, 1989a; 1990), the production of which
has been shown to stimulate M, mRNA translation
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Figure 1 Abortive replication of A/WS/33 in mouse brain.

(Enami et al, 1994), as well as to inhibit splicing of
the M gene (Hatada et al, 1990). For those A/WS/33
virus particles which are released, the HA is not
easily cleaved (Schlesinger et al, 1989); and the NA
cannot facilitate HA cleavage (Ghendon et al, 1979).
Therefore, ' the particles have a predominantly
uncleaved HA and so are largely non-infectious. In
addition, the loss of carbohydrate from its neuro-
virulent derivatives suggests that the action of
lectins on this strain might be important in blocking
viral infectivity.

Replication of adapted strains in mouse brain

After consideration of the impediments to replica-
tion of A/WS/33 in mouse brain, the possible effects
of the observed changes in the neurovirulent strains
can be evaluated. Firstly, there were a number of
changes evident in the mouse brain-adapted strains
which are also seen in variants adapted to mouse
lung: (i) specific changes in the M, protein (Ala*'—
Val and/or Thr***— Ala); (ii) alterations in the HA at
sites associated with increased pH of fusion; (iii) loss

of a specific glycosylation site in the HA,. Possible

effects of these changes in facilitating a productive
infection of the NWS strain are shown schematically
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in Figure 2. Changes (i) and (ii) are both associated
with phenotypes related to endosomal pH: the
former change correlating with the M, protein
dissociating from RNPs at a higher pH (Yasuda et
al, 1993b), the latter associated with a change in the
pH of virus-cell fusion (Wharton et al, 1989). Change
(iii) suggests that combating lectins is an important
determinant of virulence, since changes at this site
are associated with resistance to § inhibitor (Hartley
et al, 1992; Kaverin et al, 1989).

The presence of change (i) with either of change
(ii) or (iii) would appear sufficient for mouse lung
adaptation. This is supported by studies on the
mouse lung adaptation of A/FM/1/47 (Smeenk and
Brown, 1994) and Phil82/BS (CA Hartley, PC
Reading, AC Ward and EM Anders, manuscript
submitted) and is consistent with the limited
studies on mouse lung-adapted A/Port Chalmers/
1/73 (Zebedee and Lamb, 1989b). Therefore, the
adaptation of influenza to mouse lung appears to
require just a subset of those changes required for
adaptation to mouse brain. Thus, the NWS and
WSN strains are virulent-for mouse lung as well as
mouse brain, while all highly neurovirulent FPV
recombinants are pneumovirulent, although pneu-
movirulent recombinants are not necessarily neu-
rovirulent (Vallbracht et al, 1979). This lends
support to the concept of a hierarchy of virulence
determinants for different mouse tissues.

NWS '
‘ lectins
loss of CHO
(il
- adsorption &
cleaved HA o '\ fusion Cell
4 pH of fusion

(i)

ii NS mRNA

WS spicng - (8)

cellular ¥ Msplicing
proteases eo® Nucl
M1 protein
(c)HA highly assembly cieus
‘cleavable (M1 rateimiting)
NA aids o M1 levels high
() cleavage v 4 specific M1 changes

@

U o¢ off

lectins

(infectious virus)

Figure 2 Permissive replication of NWS in mouse brain.

For adaptation to mouse brain, a number of
specific changes are observed in addition to those
needed for adaptation to mouse lung: (a) increased
secondary structure at the 3’ splice-site of the NS
gene, which inhibits splicing of this gene; (b)
changes in the NA (likely to be the loss of the
glycosylation site at position 130) which facilitate
HA cleavage; (c) changes affecting the HA cleavage
site iself. The effects of these changes are shown
schematically in Figure 2. Change (a) seems
necessary to compensate for increased splicing of
the NS gene transcript in neural tissue (Bradshaw et
al, 1989b). In addition, since this change leads to
increased levels of NS, protein, it can influence the
levels of M, protein by inhibiting splicing (Hatada et
al, 1992) and promoting translation (Enami et al,
1994) of the M, mRNA. Changes (b) and (c) both
serve to increase cleavage of the HA polypeptide
and allow infectious virions to be released. This is
presumably required to compensate for the reduced
cleavage of the HA observed in mouse brain for non-
adapted strains (Schlesinger et al, 1989).

Not all of the changes are absolutely required for
neurovirulence. Change (a) is seen in both neuro-
virulent variants. However, the NS gene is only an
accessory determinant of virulence and so this
change is not absolutely required to express
neurovirulence (Sugiura and Ueda, 1980). In addi-
tion, only one of changes (b) and (c) appears
necessary, since reassortants of the WSN strain
only require the NA gene from the neurovirulent
strain to express neurovirulence (Sugiura and Ueda,
1980), while reassortants of NWS can remain
neurovirulent as a result of expressing either the
NWS HA or NA (Mayer et al, 1973), as either will
allow for a cleaved HA in the progeny. The
importance of HA cleavage for neurovirulence is
further supported by observations that pneumo-
virulent strains can be made neurovirulent by the
presence of th%eavable HA of the A/FPV/
Rostock/34 strain ( @Eht et al, 1980).

T~
Access to the CNS ,
All of the changes discussed above reld
on replication. It is also pertinent to ¢
accesses of the virus to the CNS, whethen by
immunologically mediated injury or a disrupt
blood-brain barrier. However, while. the exacty

mechanism remains unknown, this does not appear \

to play an important role in determining neuroviru-
lence, since Factor VIII positive capillary endothe-
lial cells from adult mouse brains are equally

permissive to infection with adapted and non- -

adapted strains (Bradshaw et al, 1989b).

Future directions

The studies into neurovirulence have thus far
provided a great insight into both the biology and

\



Table 1 Changes associated with neurovirulence
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Gene Changes observed

Effects on replication

NA Asn®® glycosylation site lost (WSN & NWS)
Val*®*® mutation (WSN & NWS)
Arg*'* mutation (WSN & NWS)

M M, Ala*'—Val (WSN & NWS)*
M; Thr'®®—Ala (NWS)*

NS T secondary structure at 3' splice site (WSN & NWS)
HA HA, Aer.n162 glycosylation site lost (WSN & NWS)*
HA, Ser®? mutatlon (WSN & NWS)

HA, Asp'? mutation (NWS)*

e altered. substrate specificity, with preference for small
substrates and 2—3 linkages

oT growth
e altered association/dissociation propertles of M;-RNP
complexes

ol splicing of NS (& M) gene

! lectin sensitivity?
oT HA cleavage
o altered pH of fusion

* Also observed in mouse lung-adapted strains

molecular basis of neurovirulence (summarised in
Table 1). The next step is to examine these changes
in' isolation, in order to determine their relative
importance, particularly with regard to their role in
neurovirulence per se compared to their effects on
growth rate and virulence generally. The most
appropriate means to address this is the use of
‘reverse genetics’ to create isogenic strains differing
only by single changes, an approach used to look at
the NA gene (Li et al, 1993). This is important since
genes may behave differently in different genetic
backgrounds, a phenomenon known as a ‘gene
constellation effect’ (Rott et al, 1984). The results
summarised in this review also provide a relevant
set of parameters with which to examine epidemic
virus strains which have been associated with
elevated CNS symptoms in humans. In addition,
there is an obvious need to investigate more closely
the mechanisms of CNS entry

Neurovirulence and other viruses

Neurovirulent derivatives of a number of other
viruses have also been generated, and their study
has provided uncanny parallels for many of the key
concepts discussed in this review. For example,
single amino acid changes in the envelope glyco-
protein of Sindbis virus can lead to neurovirulence
(Levine and Griffin, 1993), while a single amino
acid position in the glycoprotein determines neuro-
tropism of lymphocytic choriomeningitis virus
(Villarete et al, 1994). S1m11arly, either of two single
amino acid substitutions in the envelope glycopro-
tein of Dengue virus {one of which represents the
" loss of glycosylation site) can increase neuroviru-
lence (Kawano et al, 1993). In addition, infection of
mouse brain with measles or vesicular stomatitis
virus is characterised by restricted expression.of M
proteins (Kristensson and Norrby, 1986). ‘

Conclusions

Mouse neurovirulence represents a useful in vitro
model for human CNS complications. While it is a
somewhat artifical system, the studies presented in
this review bring us to a closer understanding. of the
molecular changes required. for influenza virus to
propagate in an atypical host. The results provide
direct support that virulence is modular, with more
than one virulence determinant able to be: found
both in the same gene, and on separate genes in the
same virus. These virulence determinants: show
some degree of specificity, with certain subsets
important in the adaptation of influenza to a
particular cellular milieus, although there is a
general improvement in replication in many cells.
In addition, most of the specific changes are single
amino acid substitutions (which are the result of
single nucleotide mutations) and so the process of
adaptation shows clear parallels to ‘antigenic drift’.

" Since the replication machinery of influenza has an

inherently high mutation rate, the virus is geared to
exploit both adaptation and antigenic change to

- .display both a wide host range ‘and continued

prevalence in particular hosts. Such continued
subversion of cellular defence mechanisms further
attests to the chameleon nature of the virus and its
importance in viral evolution. '

/.
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