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Cryptococcus neoformans is a fungus that possesses two properties unique for
yeast: (1) production of a polysaccharide capsule and (2) neurotropism. The
natural route of infection by C. neoformans is the respiratory tract; thus, factors
that regulate the development and recruitment of memory Th1 cells and
monocytes into the brain are critical for an effective response against
disseminated C. neoformans infection. Production of TNFa prior to day 7 is
required to prevent colonization of the central nervous system (CNS). Th1 type
immunity is required to clear established foci. In contrast, Th2 type immunity is
ineffective at eliminating the infection in the brain and results in decreased
survival. C. neoformans infection of MIP-1a and CCR5 knockout mice has
highlighted the complex role that some chemokines may play in different
organs. MIP-1a knockout mice have decreased leukocyte recruitment and
cryptococcal clearance from the brain compared to wild-type mice. Thus, the
host defence mechanisms that clear C. neoformans from the CNS appear to be
similar to those in the lungs: via a Th1 cell-mediated in¯ammatory response
that requires chemokines for the recruitment of effector cells.
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Introduction

Cryptococcus neoformans is a fungus that possesses
two properties unique for yeast: (1) production of a
polysaccharide capsule and (2) neurotropism (Dia-
mond, 1995). It is not entirely clear why C.
neoformans is neurotropic but the ability to
synthesize the anti-oxidant melanin from neuro-
transmitters (via the enzyme laccase) is a major
factor (Kwon-Chung et al, 1982; Salas et al, 1996).
C. neoformans enters the body by inhalation but the
primary pulmonary infection is often undiagnosed
or self-limiting (Diamond, 1995). Other unidenti®ed
virulence factors play a role in allowing the yeast to
escape the lungs and colonize the brain through
capillary embolization and destruction. The devel-
opment of protective Th1 type cell-mediated
immunity is required to eradicate the infection
(Huffnagle and Lipscomb, 1998), control cryptococ-
cal dissemination from the lungs, and eliminate
subsequent colonization in the brain (Aguirre et al,

1995; Hill and Aguirre, 1994; Huffnagle et al,
1991b).

Central nervous system (CNS) ± the site of
disseminated infection and secondary immune
response

The lungs are the primary site of C. neoformans
colonization and also the site at which the primary
immune response develops. Protective immunity to
C. neoformans requires both CD4+ and CD8+ T cells
and clearance is mediated by the generation of an
in¯ammatory response at the site of infection (Hill,
1992; Hill and Harmsen, 1991; Huffnagle et al,
1991a, 1994). Chemokines such as MIP-1a and
MCP-1 are required for leukocyte recruitment into
the lungs of C. neoformans-infected mice (Huffnagle
et al, 1995b). Production of macrophage-activating
cytokines such as TNFa, IFN-g, IL-12, and GM-CSF
are important for clearance of the infection (Huffna-
gle and Lipscomb, 1998). Clearance is mediated by a
variety of cell types through both intracellular and
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extracellular mechanisms (Diamond, 1995; Huffna-
gle and Lipscomb, 1998). If C. neoformans is
inoculated intracranially, the host can develop a
primary immune response and clear the infection
(Blasi et al, 1992). However, when C. neoformans is
acquired via the natural route of infection (the
respiratory tract), the immune response in the brain
is a secondary immune response (Diamond, 1995).
Thus, the factors that regulate recruitment of
memory Th1 cells and monocytes into the brain
are critical for an effective response against dis-
seminated C. neoformans infection.

Two of the factors that control clearance of C.
neoformans from the brain include (1) the produc-
tion of TNFa early in the response and (2) the
production of Th1 type cytokines. Intratracheal
inoculation of mice with a low virulence strain of
C. neoformans (52) produces an infection that
remains relatively contained in the lungs because
the small numbers of organisms that escape from
the lungs are cleared by cells of the reticuloen-
dothelial system or circulating phagocytes (Huffna-
gle et al, 1991b). Opsonins such as complement and
antibody also prevent establishment of extrapul-
monary foci (Casadevall, 1995; Kozel, 1993). One
role of CD4+ T cells and speci®c immunity is to clear
established cryptococcal foci from the CNS (Hill
and Aguirre, 1994). Interestingly, treatment of mice
with anti-TNFa antibodies to neutralize TNFa at the
onset of infection blocks clearance of the yeast from
the lungs and promotes colonization of the brain by
a low virulence C. neoformans strain (strain 52)
(Huffnagle et al, 1996). To further determine the
`window' when early production of TNFa is
required to protect against subsequent colonization
of the CNS, mice were given a single injection of
anti-TNFa antibody at day 0, 3, 7, or 14 post-
infection (Figure 1). Signi®cant colonization of the
CNS was observed only if the mice were treated at
day 0 or day 3. This effect was not observed if the
antibody treatment was delayed until day 7 or day
14 post-infection (Figure 1), time points by which
protective cell-mediated immunity has developed
(Huffnagle et al, 1991b). These observations demon-
strate that production of TNFa prior to day 7 is
required to prevent the establishment of cryptococ-
cal foci in the CNS.

Intratracheal inoculation of a high virulence
strain of C. neoformans (strain 145) produces an
infection that disseminates from the lungs and
establishes an infection in the brain in immuno-
competent mice (Huffnagle et al, 1995a). The
virulence factors have not been completely ident-
i®ed that account for the increased ability of C.
neoformans strains such as 145 to colonize the CNS.
However, one of the mechanisms that likely plays a
role in the ability of strain 145 to effectively
colonize the CNS in immunocompetent hosts is
that it produces virulence factors, such as melanin
and capsule, that can block TNFa production by

macrophages (Huffnagle et al, 1995a; Vecchiarelli et
al, 1995).

The experiments in Figure 2 demonstrated that
growth of C. neoformans strain 145 in the CNS is
slowed by the development of Th1 type immunity
while Th2 type immunity does not control the
infection in the CNS. CBA/J mice normally develop
Th1 type responses to C. neoformans 52 and 145
(Huffnagle et al, 1995a and Huffnagle et al,
submitted) while C57BL/6 mice develop Th2 type
responses to these two strains (Hoag et al, 1995 and
Huffnagle et al, in preparation). Accordingly,
C57BL/6 mice were not able to control the growth
of strain 145 in the brain and the mice died by week
7 post-infection (Figure 2). In summary, (1) early
production of TNFa is required to prevent establish-
ment of cryptococcal foci in the CNS and (2) Th1
type immunity is required to clear established
cryptococcal foci.

Role of leukocyte recruitment into the CNS

The effector mechanisms that clear C. neoformans
from the CNS appear to be similar to those in the
lungs, namely, via a T cell-mediated in¯ammatory
response (Aguirre et al, 1995; Blasi et al, 1994; Hill
and Aguirre, 1994; Salkowski and Balish, 1990).
The experiments in Figure 3 suggest that growth of
C. neoformans in the CNS is one of the signals that
initiates in¯ammatory cell recruitment into the
CNS. Leukocyte recruitment into the brain of
CBA/J mice was initiated once the burden of C.
neoformans in the brain became signi®cant (Figure
3). The low virulence C. neoformans strain 52

Figure 1 Effect of TNFa neutralization on C. neoformans
colonization of the CNS following dissemination from the lungs.
CBA/J mice were inoculated with 104 c.f.u. of a low virulence C.
neoformans strain (52) on day 0 and treated with 1 mg of anti-
TNFa Ab or control Ig at the time indicated. Brain c.f.u. were
assayed at day 35 post-infection. *P50.01 compared to control
Ig treated mice at the same time point (day 3 anti-TNFa treated
mice are compared to day 0 or day 7 control mice). n=5 ± 10
mice per group.
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disseminated to the CNS but did not establish a
signi®cant infection; leukocyte recruitment was low
(Figure 3A). In contrast, the high virulence
strain 145 established an infection in the brain
(4105 c.f.u.) that evoked an in¯ux of leukocytes
into the CNS (Figure 3B). Other laboratories have
reported that leukocyte recruitment into the brain is
de®cient in nude mice, SCID mice, and mice treated
with anti-IFN-g antibodies (Aguirre et al, 1995; Hill
and Aguirre, 1994; Salkowski and Balish, 1990).
Thus, the previous and current studies demonstrate
that CNS in¯ammation during C. neoformans
infection is an effector phase mechanism of Th1
cell-mediated immunity.

Role of chemokines in protecting the CNS from
disseminated cryptococcosis

Chemokines are major mediators of leukocyte
recruitment into sites of C. neoformans infection.
In the brain, microglial cells are potent sources of
IL-8, IP-10, MIP-1a, MIP-1b, RANTES, KC, and
MCP-1 (Kunkel et al, 1995). The speci®c signals
for chemokine production by microglial cells are
not known; however, three possible signals are (1)
C. neoformans products, (2) pro-in¯ammatory
cytokines, or (3) disruption of the osmotic balance
in the brain. C. neoformans products such as

glucoronyloxylmannan (GXM) can directly induce
IL-8 production by isolated microglial cells in
culture (Lipovsky et al, 1998). Heat-killed C.
neoformans injected intracranially induces the
expression of a number of pro-in¯ammatory cyto-
kines including TNFa resulting in protective im-
munity (Blasi et al, 1992, 1994). This protective
effect can be mimicked by intracranial injection of
other in¯ammatory stimuli such as Toxoplasma
gondii and Candida albicans (Aguirre et al, 1995;
Barluzzi et al, 1997). Isolated C. neoformans
products such as GXM or mannoprotein also
directly induce TNFa production by macrophages
and peripheral blood monocytes (Levitz and North,
1997; Retini et al, 1996). TNFa, IFN-g, and other
pro-in¯ammatory cytokines are potent inducers of
chemokine production by resident cells of the CNS.
Neutralization of TNFa or IFN-g after immunity has
developed blocks leukocyte recruitment into the
brains of C. neoformans-infected mice directly
demonstrating a role for these cytokines in leuko-

Figure 2 Role of Th1 vs Th2 immunity in survival following C.
neoformans infection. Genetically resistant (Th1 response, CBA/
J) and susceptible (Th2 response, C57BL/6) mice were inocu-
lated intratracheally with 104 c.f.u. of a high virulence C.
neoformans strain (145) on day 0. Strain 145 disseminates from
the lungs to the CNS in all strains of mice. Death was due to
CNS infection (by c.f.u. analysis and clinical observations) Brain
c.f.u. at 4 weeks post-infection were 4.57+0.39 (log10 c.f.u.) for
CBA/J mice and 6.43+0.56 for C57BL/6 mice (log10 c.f.u.). n=8 ±
12 mice per group.

A

B

Figure 3 Leukocyte recruitment into the CNS in response to
growth of C. neoformans in the brain. CBA/J mice were
inoculated intratracheally with 104 c.f.u. of either (A) low
virulence C. neoformans strain (52) or (B) high virulence strain
(145) on day 0. Total leukocyte numbers and brain c.f.u. were
quantitated from perfused, collagenase digested brains of mice at
the times indicated. The low numbers of leukocytes in the brains
of mice prior to infection (week 0) is most likely due to low level
blood capillary leukocyte contamination of the preparation.
**Time point at which dissemination is detected in 450% of
the mice. *P50.05 compared to uninfected mice. n=8 ± 14 mice
per time point.
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cyte recruitment into the CNS (Aguirre et al, 1995).
Finally, the production and shedding of polysac-
charide capsule by C. neoformans ultimately
destroys the osmotic balance in the brain and leads
to intracranial swelling (Lee et al, 1996). Changes in
the osmotic gradient in the brain can also be a
signal for chemokine production in the brain (Koike
et al, 1997). Clearly, multiple pathways exist for
induction of chemokine expression in the brain
during C. neoformans infection.

C. neoformans infection of MIP-1a and CCR5
knockout mice has highlighted the complex role
that some chemokines may play in different organs.
MIP-1a is a CC chemokine that is important in
monocyte and neutrophil recruitment into the lungs
of C. neoformans-infected mice and into sites of
DTH reactions against cryptococcal antigen (Doyle
and Murphy, 1997; Huffnagle et al, 1997). MIP-1a
knockout mice have decreased survival following
intratracheal inoculation of high virulence C.
neoformans strain 145 (Huffnagle et al, submitted).
These mice develop a chronic pneumonia but die
from unrestricted growth of C. neoformans in the
brain (Figure 4 and Huffnagle et al, submitted).
Brain c.f.u. were over 100-fold higher in MIP-1a
knockout mice compared to wild-type mice at week

Figure 4 Leukocyte recruitment into the brains of MIP-1a knockout and wild-type mice. Photomicrograph of the brains of mice at
week 10 post-infection. Mice were inoculated intratracheally with 104 c.f.u. of a high virulence C. neoformans strain (145) on day 0.
(A) Uninfected brain, (B) 10 week infected brain from wild-type mouse, (C) 10 week infected brain from MIP-1a knockout mice
illustrating meningeal infection, (D) 10 week infected brain from MIP-1a knockout mice illustratiing a deep brain cyst.

Figure 5 Brain c.f.u. in MIP-1a knockout (MIP-1a7/7, KO) and
wild-type mice (MIP-1a+/+, WT) at week 5 post-infection. Mice
were inoculated intratracheally with 104 c.f.u. of C. neoformans
strain 145 on day 0. c.f.u. are expressed as the mean+s.e.m.
c.f.u. per whole brain. n=18 ± 19 mice per group. *P50.02
compared to WT mice.
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5 (Figure 5). By week 10, the infectious load of C.
neoformans (organisms plus extracellular polysac-
charide capsule) in the brain was strikingly
different between wild-type and knockout mice, as
demonstrated in histological sections (Figure 4).
MIP-1a knockout mice clearly also have a defect in
the ability to recruit leukocytes into the brain
(Figure 4). However, the T cell response in the
lungs of these mice also resembles a Th2 response
(Huffnagle et al, submitted) and the development of
a Th2 response to C. neoformans also prevents
clearance of the organism from the CNS (Figure 3).
Thus, MIP-1a may play a role as a recruitment
molecule in the CNS and/or as a `switch factor' early
in the response for promoting Th1 over Th2
immunity.

The most intriguing data on the complex role of
chemokines in the CNS has come from studies of the
role of the CC chemokine receptor CCR5 in C.
neoformans infections. CCR5 is a receptor for MIP-
1a, MIP-1b, and RANTES and a co-receptor for
monotropic strains of HIV (Alkhatib et al, 1996;
Deng et al, 1996; Dragic et al, 1996; Samson et al,
1996). Surprisingly, intratracheal inoculation of C.
neoformans into CCR5 knockout mice appears to
result in a pulmonary infection that is cleared by an
exaggerated immune response in the lungs but a
central nervous system infection that is not cleared
due to a lack of leukocyte recruitment into the brain
(Huffnagle et al, submitted). Memory Th1 cells
appear to preferentially express CCR5 (compared to
naive or memory Th2 cells) (Bonecchi et al, 1998;
Loetscher et al, 1998; Qin et al, 1998). Since the
brain is a secondary site of cryptococcal infection
(the lungs are the primary site), CCR5 may play a
critical role in Th1 cell traf®cking into the CNS.

While the pathology appears to suggest that CCR5 is
required for leukocyte traf®cking into the CNS of C.
neoformans-infected mice (Huffnagle et al, sub-
mitted), it is not clear what role CCR5 plays on other
cells in the CNS such as microglial cells and
endothelial cells (Rottman et al, 1997).

Research is beginning to de®ne the roles of
speci®c chemokines in immunity and leukocyte
recruitment into the central nervous system during
C. neoformans infection. It is now becoming clear
that in¯ammatory responses in the CNS during C.
neoformans infection are protective and function to
clear disseminated infection. Chemokines will be
major mediators of leukocyte recruitment into the
CNS. However, as demonstrated by the studies of
MIP-1a and CCR5 knockout mice, many chemo-
kines will likely be pleiotropic and their function
determined by (1) the timing of expression, (2) the
cytokine milieu at the time of expression, and (3)
the organ in which they are expressed.
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